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Abstract

In the era of misinformation and machine learning, the fact-checking community is eager
to develop automated fact-checking techniques that can detect misinformation and present
fact-checks alongside problematic content. This thesis explores the technical elements and
social context of one such “claim matching” system, Google’s Reviewed Claims. The Re-
viewed Claims feature was one of the few user-facing interfaces in the complex socio-technical
system between fact-checking organizations, news publishers, Google, and online information
seekers. This thesis addresses the following research questions:

RQ1: How accurate was Google’s Reviewed Claims feature?

RQ2: Is it possible to create a consensus definition for “relevant fact-checks” to enable the
development of more successful automated fact-checking systems?

RQ3: How do different actors in the fact-checking ecosystem define relevance?

I investigate these research questions through a series of methods including qualitative
coding, qualitative content analysis, quantitative data analysis, and user studies.

To answer RQ1, I qualitatively label the relevance of 118 algorithmically assigned fact-
checks and find that 21% of fact-checks are not relevant to their assigned article.

To address RQ2, I find that three independent raters using a survey are only able to come
to “fair-moderate agreement” about whether the algorithmically assigned fact-checks are rel-
evant to the matched articles. A reconciliation process substantially raised their agreement.
This indicates that further discussions may create a common understanding of relevance
among information seekers. Using raters’ open-ended justification responses, I generated 6
categories of justifications for their explanations. To further evaluate if information seekers
shared a common definition of relevance, I asked Amazon Mechanical Turk workers to classify
six different algorithmically assigned fact-checks and found that crowd workers were more
likely to find the matched content relevant and were unable to agree on the justifications.

With regard to RQ3, a sociotechnical analysis finds that the fact-checking ecosystem
is fraught with distrust and conflicting incentives between individual actors (news publish-
ers distrust fact-checking organizations and platforms, fact-checking organizations distrust
platforms, etc.). Given the distrust among actors, future systems should be interpretable
and transparent about their definition of “relevance” as well as the ways in which the claim
matching is performed.

Fact-checking is dependent on nuance and context, AI is not technically sophisticated
enough to account for these variables. As such, human-in-the-loop models seem to be es-
sential to future automated fact-checking approaches. However, the results of this thesis
indicate untrained crowd workers may not be the ideal candidates for modeling complex
values in sociotechnical systems.
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Chapter 1

Introduction

Figure 1.1: The number of fact-check articles written by the two largest fact-checking or-
ganizations from 1995-2018. There has been a sharp increase in the number of fact-checks
produced by both Snopes and PolitiFact over the last several years.

1.1 Motivation

In response to fears about the spread of online misinformation, there has been a rapid growth

and investment in fact-checking (see Figure 1.1). In August 2018, the Duke Reporters’

1
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Lab identified 156 current global fact-checking initiatives. Of those organizations, 102 were

established after 2013.1 However, only a small percentage of people who are exposed to

problematic online content are presented with corrective information like fact-checks. In the

era of big data and artificial intelligence, a key agenda item for the fact-checking movement

has been to develop automated fact-checking systems that leverage techniques like machine

learning and natural language processing to limit peoples’ exposure to misinformation by

either having platforms 1) suppress stories that have an associated fact-check or 2) present

relevant fact-checks alongside problematic content.

Figure 1.2: An example of the Knowledge Panel with the Reviewed Claims feature that
was displayed in January 2018 with the query “breitbart.” The Reviewed Claims component
was visible on a subset of news publisher search engine results pages from November 2017 -
January 2018.

In November 2017, as part of an expanded effort to provide users with context about

news publishers, Google released Reviewed Claims (see Figure 1.2), a component of the

1https://reporterslab.org/the-number-of-fact-checkers-around-the-world-156-and-growing
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Knowledge Panel that appears on many search engine results pages (SERP). The Reviewed

Claims feaure displayed authoritative, third-party fact-checks about content produced by

certain news publishers. This feature was publicized as a meaningful aid to users2 in the

fight against misinformation. However, without informing fact-checking organizations, news

publishers, or information seekers, Google’s Reviewed Claims “claim matched” over half

of the fact-checks that appeared in the component. Claim matching is a process in which

fact-check articles that do not list the original source of a fact-checked statement (i.e. the

claimant) are algorithmically assigned to a piece of online content produced by a certain

publisher (see Figure 2.2 and 2.3). Systems like Reviewed Claims that claim match existing

fact-checks to online content have the ability to increase the number of stories that have

been fact-checked and simplify the process of displaying fact-checks alongside problematic

online content.

However, several news publishers complained about this feature in January 2018. They

alleged that Google was displaying partisan bias and claimed that several of the fact-checks

listed in their Reviewed Claims components were not relevant to the associated content. Soon

after, Google removed the Reviewed Claims component from the Knowledge Panel, citing

“bugs” in the feature’s implementation. But what were the bugs? What can be learned from

the mistakes of the Reviewed Claims feature to enable the development of better tools that

combat misinformation?

To understand the failure of the Reviewed Claim feature requires 1) a technical under-

standing of the limitations of the Reviewed Claim system and 2) a sociotechnical perspective

of the fact-checking ecosystem’s stakeholders and incentives.

2https://www.blog.google/products/search/learn-more-about-publishers-google/



CHAPTER 1. INTRODUCTION 4

1.2 Contributions and Research Questions

The research questions this thesis addresses are:

RQ1: How accurate was Google’s Reviewed Claims feature?

I find that the Reviewed Claims feature made a significant number of classification

mistakes. In Chapter 4, I focus on how the designers of the claim matching system

described in “Relevant Document Discovery for Fact-Checking Articles” [54] define

and assess accuracy. This paper describes the system that likely generates the claim

matches displayed in Reviewed Claims components.

The limitations described in “Relevant Document Discovery for Fact-Checking Arti-

cles” are present in the Reviewed Claims system and account for some of the classi-

fication errors detailed by news publishers. In Chapter 4.5, I outline some additional

limitations of the system implementation, especially in regard to the authors’ use of

ClaimReview data.

In Chapter 5, I qualitatively label 118 algorithmically assigned fact-checks to assess

the accuracy of the Reviewed Claims claim matches. Overall, I find that the 78% of

the fact-checks are relevant to their assigned claimant documents. I assign three raters

30 claim matches, and they determine that 14 of the 30 are relevant.

RQ2: Is it possible to create a consensus definition for “relevant fact-checks” to enable the

development of more successful automated fact-checking systems?

While it may be possible to create a common definition for “relevant fact-checks,” I

am unable to generate a satisfactory definition in this thesis.

In Chapter 5, I explore the results of qualitatively coding raters justifications for their

assessment of the irrelevance of the fact-checks. The five categories I generate are:

(a) The fact-check concerns a minor detail in the article.



CHAPTER 1. INTRODUCTION 5

(b) The fact-check is verifying a different claim than what was in the article.

(c) The fact-check and article cover the same general topic but differ on details.

(d) The fact-check and article are framed differently.

(e) The fact-check is more general than the article.

In Chapter 6, I show that these rater justifications have significant overlap and differ-

ences with news publishers’ criteria for relevance. However, crowd workers are not able

to agree on which justifications apply to a given claim match. Thus, the justifications

listed above are insufficient to define the multifaceted concept of relevance.

RQ3: How do different actors in the fact-checking ecosystem define relevance?

In Chapter 2.2, I explain that without a definition of a relevant fact-check, it is 1) im-

possible to determine the accuracy of algorithmically assigned claim-document models

and 2) difficult to describe the feature to news publishers and online information seek-

ers.

In Chapter 6, I use a sociotechnical lens to explore the different motivations and def-

initions of actors in the fact-checking ecosystem that inform their conception of rel-

evance. In addition, I consider their influence within the fact-checking ecosystem. I

find complex interactions exist between the different actors and some overlap between

the various conceptions of relevance. If future automated fact-checking systems are to

be more successful than Google’s Reviewed Claims, system designers need to carefully

consider how complex social values like relevance are currently modeled and should be

modeled in the fact-checking ecosystem.

Through an exploration of these research questions and the findings discussed briefly

above, this thesis offers the following primary contributions:
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1. The first sociotechnical analysis of an automated fact-checking system. This sociotech-

nical lens builds understanding as to why similar systems will inevitably face pushback

from a variety of actors. This analysis also delves into how “neutral” technical con-

cepts like “accuracy” become entangled with challenging social and epistemological

questions of “relevance.”

2. Preliminary evidence suggests that untrained crowd workers may not be able to de-

termine the nuances of “relevance” in fact-checking. This is significant since there

is a push for platforms to increase reliance on crowd workers as quality control for

technology platforms in fact-checking and related domains.

1.3 Thesis Outline

This thesis is organized in the following chapters:

• Chapter 2 provides the background needed for this thesis including an introduction

to fact-checking, relevance, Google’s Reviewed Claims, algorithm auditing, and the

sociotechnical perspective.

• Chapter 3 explores the literature on misinformation detection, the benefits and cri-

tiques of fact-checking, automated fact-checking, and the sociotechnical perspective.

• Chapter 4 dissects the paper “Relevant Document Discovery for Fact-Checking Arti-

cles,” which provides the technical specifications of the Reviewed Claims system. Then,

I offer a critique of multiple elements of the paper through a quantitative analysis of

the ClaimReview markup and a further analysis of the methods of the paper.

• Chapter 5 presents three qualitative studies that I designed and conducted to evaluate

Google’s Reviewed Claims’ accuracy and information seekers’ justifications of their
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accuracy assessments. The results paint a complicated picture of how information

seekers define relevance but makes clear that information seekers did find not all of the

claim matches to be relevant.

• Chapter 6 adopts a sociotechnical perspective of the fact-checking ecosystem’s stake-

holders’ reactions to the Reviewed Claims feature. The sociotechnical lens reveals the

complex relationship between stakeholders that make modeling relevance extremely

challenging. I rely on a sociotechnical framework to analyze the individual actors and

content analysis of various media reports of the feature from early 2018.

• Chapter 7 provides a roadmap for future work and offers a brief overview of the most

significant findings of this thesis.



Chapter 2

Background

In this chapter, I outline key concepts relevant to the analysis I perform in this thesis,

namely 1) fact-checking, 2) computational approaches to fact-checking, 3) the concept of

“relevance” in claim matching, 4) the Reviewed Claims feature, 5) algorithm audits, and 6)

the sociotechnical perspective.

2.1 Understanding Fact-checking

The American Press Institute (API) defines the purpose of fact-checking as the following:

“Fact checkers and fact-checking organizations aim to increase knowledge by re-

reporting and researching the purported facts in published/recorded statements

made by politicians and anyone whose words impact others’ lives and livelihoods.

Fact checkers investigate verifiable facts, and their work is free of partisanship,

advocacy, and rhetoric.

The goal of fact-checking should be to provide clear and rigorously vetted in-

8
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formation to consumers so that they may use the facts to make fully cognizant

choices in voting elections and other essential decisions.”1

As the API explains, fact-checking is different from traditional journalism because it is the

“re-reporting” of verifiable, significant claims. A fact-check never produces new information,

but rather selects a claim and uses existing reporting and research to assess the validity of

that claim.

Each fact-checking organization has developed and followed its own process for fact-

checking online information. An ethnographic study of PolitiFact’s fact-checking process by

Graves [21] describes the following stages:

1. Selecting claims to fact-check.

2. Contacting the claimants.

3. Tracing the origins of the claims.

4. Collaborating with domain experts to develop fact-check articles.

5. Ensuring the process and sources are properly documented in the article.

Even with these established processes, questions about the persuasiveness of fact-checks

and concerns about fact-checking organizations’ methodological rigor have plagued fact-

checking initiatives. The various critiques of fact-checking will be further explored in Chapter

3.3.

Graves disagrees with many of these critiques and finds that similar to scientists and

investigative journalists, fact-checkers deal “with controversies in which not just facts but

rules for determining them are in question, and thus affords a view of the way material,

1 https://www.americanpressinstitute.org/fact-checking-project/fact-checker-definition
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social, and discursive contexts structure factual inquiry” [21]. This thesis aims to investigate

the definition of accuracy in automated fact-checking systems by looking at the ways political

and social contexts structure the rules of determining relevance.

2.2 Computational Approaches to Fact-checking

Some researchers believe that automated fact-checking approaches have the potential to

effectively combat misinformation by addressing some of the limitations of manual fact-

checking [24] with computational methods. Full Fact’s 2016 report “The State of Automated

Factchecking” [8] breaks down automated fact-checking approaches into four stages. End-

to-end automated fact-checking systems will include all four stages in one system.

1. Monitor claims : Automated fact-checking systems need to monitor large amounts

of raw content and identify the claimants and other information about the content.

Metadata is essential for providing important context about the content, but is almost

always insufficient.

2. Spot Claims : Full Fact breaks down the tasks within this step as:

• “Monitoring claims that have been fact-checked before in new text”

• “Identifying new factual claims that have not been fact-checked before in new

text”

• “Making editorial judgments about the priority of different ”

• “Dealing with different phrasing for the same or similar claims”

3. Check Claims : See Chapter 3.1 and 3.4 for the different approaches currently being

employed to verify claims.



CHAPTER 2. BACKGROUND 11

4. Create and Publish: This step requires automated fact-checking systems to share the

results of step 3 in a user readable format (fact-check article, tweet, etc.).

2.3 Defining Relevance

Figure 2.1: The first search result for the query “can bananas have HIV” is a fact-check.
Google has started a number of initiatives to surface fact-checks at the top of the SERP
(including Reviewed Claims, see Figure 2.2)

Fact-checking can take many different forms, but manual fact-checking (i.e. non-automated

approaches) does not usually require thinking about relevance. In the simplest case, a fact-

checker gets a tip from a reader about a possible false statement they came across, for

example, bananas can have HIV. The fact-checker investigates that claim, identifies the ori-

gin of that claim, and writes up a fact-check. Soon after, when a user searches “can bananas

have HIV” the fact-check article “Are Discolored Bananas Infected with HIV?” is displayed

as a top search result (see Figure 2.1. In this example, the fact-check is relevant to the orig-

inal claimant article (a social media post) by default, since it is a response to that original

piece of content.

However, there are still ways in which the claimant can argue that the fact-check is not

relevant to the original article. For instance, the fact-checker may have overlooked a piece

of context necessary for understanding the claim or a missed a relevant detail in the article.
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Other shortcomings of manual fact-checking itself will be discussed in Chapter 3.3.

Similar to many other machine learning tasks, automated fact-checking approaches (fur-

ther explored in Chapter 3.4) must have a conception of accuracy to assess the quality of the

model. In terms of the “claim-document discovery process,” this means that if the fact-check

“Are Discolored Bananas Infected with HIV? is algorithmically matched to an article about

an earthquake in California, this should not be considered a relevant match. In fact, a model

that algorithmically assigned such <fact-check, article> pairs would most likely have a low

accuracy score. The determination of whether a fact-check is relevant or not seems to be a

natural analog to traditional machine learning notions of accuracy.

Further examples reveal that the concept of relevance is actually quite complicated. If

“Are Discolored Bananas Infected with HIV?” debunks claims about red discolorations of

bananas, what if the algorithmically assigned article discusses blue discolorations of bananas

infecting people with HIV? What about orange apples?

While this example does not appear in the Reviewed Claims example, the point remains:

how can relevance be defined so that 1) the needs of information users are prioritized and 2)

other stakeholders in the fact-checking ecosystem are treated fairly?

Even before Google, researchers recognized the complexities of defining relevance. In their

2000 paper, Introna and Nissenbaum write that “determining relevancy is an extraordinarily

difficult task...Besides the engineering challenges, experts must struggle with the challenging

of approximating a complex human value” [26].

Google researchers defined their conception of relevance in the claim-document discovery

model as:

Given a fact-checking article with claim c, a claim-relevant document is a related

document that addresses c [54].
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This definition leaves much to interpretation. Understanding and being able to com-

municate the definition of relevance is incredibly important to the success of automated

fact-checking features. Without clarity as to what is and is not a relevant fact-check, it

is impossible to determine the accuracy of algorithmically assigned claim-document models

and accurately describe the feature to news publishers and online information seekers.

2.4 Introduction to Reviewed Claims

The Google search engine result page (SERP) no longer consists of ten blue links [17]. In the

early days of Google, a user would have to click on one of the search result links to find the

answer to their query; however, with the addition of the Knowledge Graph in 20122, there

has been an increased emphasis on increasing content for informational queries (which differ

from navigational and transactional queries [10]) on the SERP itself. The Knowledge Graph

draws on information from a variety of sources including Freebase and Wikipedia. Previous

studies have illustrated that Google relies on third-party sources, in particular, Wikipedia,

to create high-quality SERPs [35]. Oftentimes, Knowledge Graph data is displayed at the

top of the SERP in the Knowledge Panel.

In November 2017, in response to concerns that Google was not effectively combating

misinformation on its platform, Google augmented its news publisher Knowledge Panels.

The described use case of the expanded Knowledge Panels was as follows:

“As tens of thousands of publishers of all sizes push out content every day, chances

are you’ve come across a publication you’re not familiar with or one you wanted

to learn more about.

To help in this situation, publisher Knowledge Panels on Google will now show

2 https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html



CHAPTER 2. BACKGROUND 14

the topics the publisher commonly covers, major awards the publisher has won,

and claims the publisher has made that have been reviewed by third parties.

These additions provide key pieces of information to help you understand the

tone, expertise, and history of the publisher.”3

The section of the Knowledge Panel that included “claims the publisher has made that

have been reviewed by third parties” was named Reviewed Claims (see Figure 2.2). However,

accusations of anti-conservative bias and errors in the classification algorithm caused Google

to discontinue the Reviewed Claims feature in mid-January 2018 45.

In particular, The Daily Caller complained that three of the ten fact-check articles dis-

played in the Reviewed Claims tab did not mention The Daily Caller. For example, in Figure

2.3, the “Claimed by” element of the interface explicitly states the claim comes from as The

Daily Caller. However, the original fact-checking article from PolitiFact clearly identifies

“Jim Patterson,” a California politician, as the source of the claim. In fact, PolitiFact was

unaware of The Daily Caller’s article. Google was using algorithms (described in Chapter

4) to automatically assign fact-checks to news articles that were “relevant” to the fact-check.

However, Google did not notify any stakeholder in the fact-checking ecosystem about the

claim matching algorithm that comprised 57% of the analyzed fact-checks displayed in Re-

viewed Claims panels (detailed in Chapter 5).

In this thesis, I present the first analysis of the content in the Reviewed Claims feature.

This analysis is based on a dataset of approximately 8,000 news publisher SERPs (search

engine result pages), which were collected in early January 2018. In the dataset, I identified

59 news publisher SERPs that contained the Reviewed Claims tab. These 59 Reviewed

Claims components contain a total of 221 fact-checks. Of the 221 fact-checks, I identified

3 https://www.blog.google/products/search/learn-more-about-publishers-google
4https://www.poynter.org/fact-checking/2018/blame-bugs-not-partisanship-for-google-wrongly-

appending-a-fact-check-to-the-daily-caller
5https://www.poynter.org/fact-checking/2018/google-suspends-fact-checking-feature-over-quality-

concerns
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Figure 2.2: The SERP of The Daily Caller with the Reviewed Claims feature circled as it
appeared in January 2018. Reviewed Claims component contained fact-checks of articles
produced by that news publisher.

Figure 2.3: The Reviewed Claim feature indicates that the claim was made by The Daily
Caller. However, the PolitiFact fact-check does not mention Daily Caller. This is an example
of an algorithmically assigned fact-check discussed throughout this thesis.
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119 as algorithmically assigned fact-checks.

I define an algorithmically assigned fact-check to be a fact-check article that does not

reference the online document explicitly in the text or in the structured data of the fact-check.

2.5 Auditing Reviewed Claims

Technical researchers employ several methods to understand the workings of algorithmic sys-

tems. An increasingly common approach is the algorithm audit, which derives its approach

from audits used to identify illicit financial transactions, housing, and hiring discrimination.

Algorithm audits have been used to determine whether there is partisan bias on Google [44],

sexism in online marketplaces [23], racism on platforms [38], and many other systems that

are seemingly neutral or opaque without controlled experimentation.

Algorithm audits are performed in different ways. One option is to conduct a code audit

(i.e. look at the code of the algorithm). However, as Burrell points out, even if one could

decipher the code, machine learning models are difficult to decipher and it is impossible to

understand the biases of input data from the code of the algorithm [14]. The second option is

to conduct a scraping audit. As Sandvig describes it, a scraping audit is “when a researcher

makes repeated queries to a platform and analyzes the results” [45].

In this thesis, I combine the two approaches. Google has not publicly released the code

for the Reviewed Claims feature for analysis. However, at the 2018 Web Conference, Google

Research published a paper titled “Relevant Document Discovery for Fact-Checking Arti-

cles in which they outline an automated claim matching system [54]. The paper presents a

system that performs better than any other existing approach at the “claim-document dis-

covery process.” The claim-document discovery process matches existing fact-check articles

to relevant documents that are not mentioned explicitly in the fact-check.
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While the term “Reviewed Claims” does not appear in the paper, the objective, method,

authorship, and cited limitations match up with what is known about the Reviewed Claims

feature. Therefore, it seems likely that the model described in the paper is the backend of

the Reviewed Claims feature. This paper allows me to perform a modified code audit, or

“specifications audit,” as I am able to examine the technical features of the system, but

unable to examine the data that was fed into or produced by the model. As a result, this

thesis does not contain any discussion of the

Although, I am unable to do a traditional “scraping audit” for this project where I would

systematically test different inputs (fact-checking articles and news publisher SERPs), I

have collected a set of news publisher SERPs. As described in Chapter 5.1, as part of a

separate research project, I collected 59 Reviewed Claims tabs in the course of collecting

the SERPs of approximately 8,000 news publishers in January 2018. I programmatically

collected over 30,000 fact-check articles in early 2019 to examine the prevalence and structure

of the ClaimReview markup, which Wang et al. [54] cited as essential to their system.

2.6 Introduction to the Sociotechnical Perspective

In the field of Science and Technology Studies (STS), systems consisting of both technical

and social components are defined as “sociotechnical systems.” In “Fairness and Abstraction

in Sociotechnical Systems,” the sociotechnical view is defined as requiring technical actors

to engage with “different frameworks that provide guidance in identifying, articulating, and

responding to fundamental tensions, uncertainties, and conflicts inherent in sociotechnical

systems” [47].

Adopting a sociotechnical view to analyze the Reviewed Claims and discuss future au-

tomated fact-checking solutions is necessary because the success of the feature depends not
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only on the algorithms that Google researchers created to perform the claim matching, but

also on how the various actors in the fact-checking ecosystem interact with the system.

Moreover, as already mentioned in “Defining Relevance” if different actors define relevance

differently, how can we assess the accuracy of “relevance classifiers?”

Thus, a sociotechnical lens is a useful perspective for analyzing the limitations of the

Reviewed Claims feature. In Chapter 3.5, I detail two projects that have adopted a so-

ciotechnical perspective to analyze shortcomings in technical tools or proposed solutions by

analyzing the complex social interactions around technical systems.



Chapter 3

Related Research

In this chapter, I will discuss some of the relevant literature that informs automated fact-

checking. This includes concerns about misinformation, benefits and critiques of fact-

checking, computational approaches to fact-checking. I summarize two recent sociotechnical

analyses that provide background on the insights produced by sociotechnical approaches as

well as findings that inform this thesis.

3.1 Detecting and Limiting Misinformation

Online misinformation has created widespread concern. Combating problematic information

is a major priority for many different research communities including computer science,

psychology, and political science. While there has been widespread speculation that fake

news impacted the 2016 U.S. presidential election, recent research casts doubt on those

theories [22]. Much of the concern centered on the spread of fake news on platforms like

Facebook, but a significant amount of traffic to fake news sites came via search engines [2].

Broadly, fake news detection efforts center on three different categories of approaches:

19
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context-based, style-based, and knowledge-based [48].

Context-based approaches use social network analysis techniques to determine whether

a story is credible [48]. These approaches often rely on propagation patterns and post

metadata. See [52] [31] [11] [36] for more information. Style-based approaches rely solely

on the linguistic features of text to determine the stance of an article or detect deceptive

language. Work in this area of fake news detection includes the research presented in [42]

[53] [43].

While these techniques hold promise, the remainder of my thesis discusses knowledge-

based approaches, sometimes referred to as fact-checking. Knowledge-based systems create

computational tools that build on existing human processes used to detect and combat

misinformation. Additionally, many of the most heralded potential solutions to online mis-

information are knowledge based approaches [34].

3.2 Benefits of Fact-checking

One benefit of fact-checking is that exposure to a fact-check can correct a person’s mispercep-

tions . Results from the Annenberg Public Policy Center’s 2012 Institutions of Democracy

Political Knowledge Survey found that people who were exposed to fact-checking were more

accurate in their knowledge of campaign background as well as candidate’s stance on issues,

even after controlling for demographic information [20]. A longitudinal study of the 2014

election found that exposure to fact-checking significantly improved the accuracy of people’s

beliefs.” This study emphasizes differences in the effect size for different demographic groups:

fact-checking is substantially more effective for people with higher education levels and who

identify as Democrats [41]. Additionally, social media posts with a link to a fact-check in

the comments contain linguistic signals indicating that people begin to doubt that rumor
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once a fact-check link is added [28].

A second benefit to fact-checking is that it limits the spread of problematic information.

A recent partnership between fact-checkers and Facebook resulted in fact-checked articles

rated false to reach 80% fewer people;1 however, further data about the reach and the rela-

tive coverage of fact-checks has not been publicly shared with researchers [6]. Nevertheless,

research comparing Twitter, which has taken a less proactive stance towards limiting misin-

formation, to Facebook, after they made changes to limit misinformation on the platform,

found that sharing of misinformation occurred 60% less on Facebook after their changes.

This included but was not limited to the Facebook-fact checker partnership [3].

Additionally, since the rise of third-party online fact-checking, political candidates have

been more cognizant of fact-checking. When state legislators believed that their statements

were being fact-checked, they reduced the number of inaccurate statements they shared

[40]. Mark Stencel, co-director of the Reporters’ Lab at Duke University, categorized the

way politicians interact with fact-checking.2 These interactions include using fact-checking to

validate politicians arguments and dedicating financial and personnel resources to responding

to fact-checks. Stencel explains how fact-checks are weaponized by candidates to support

their own viewpoints and undermine their opponents.

3.3 Critiques of Fact-checking

The first critique of fact-checking is that it is extremely difficult to change people’s opinions

about what is true [18]. While there is evidence of some corrective effects when people who

are exposed to untrue information are presented with fact-checks (see the benefits section),

the evidence is not conclusive [39]. Additionally, other studies find that people don’t only

1https://www.blog.google/outreach-initiatives/google-news-initiative/building-trust-online-partnering-
international-fact-checking-network/

2https://www.politico.com/magazine/story/2015/05/fact-checking-weaponization-117915
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share information that they believe is true [5]. This means providing fact-checks may not

limit the spread of online problematic information. There is an epistemological question as

to whether it is even possible to objectively fact-check a claim. Amazeen argues that almost

all statements have nuance and context that makes it extremely challenging to label the

factual correctness of language [51]. Critics of fact-checking find empirical evidence of the

epistemological and methodological limitations of fact-checking in Marrietta et al., which

illustrates that fact-checkers, when they fact-check the same claim, often do not assign the

same truthiness value to the statement [33] (although [4] finds the opposite). Studies also

find that fact-checkers claims rarely overlap [30] [33], leading to bigger questions about

the methods of story selection, discussed in [7]. This critique is amplified by perceptions

of partisanship and bias of the fact-checking organizations themselves. This is especially

important because fact-checking requires that readers trust the fact-checker.

3.4 Automated Fact-checking Systems

Beyond Reviewed Claims, there have been several other fact-checking claim matching system

prototypes. One of the early systems that attempted automated fact-checking was Truth

Goggles [46], a browser extension feature that would highlight the content on a webpage

that was questionable. The interface was designed to encourage critical thinking about the

claim. However, Truth Goggles was never able to implement an automated approach. The

project has been revived and there are current efforts to fully automate claim matching.3

ClaimBuster [25] is another automated fact-checking system currently in development.

The creators describe the project as “an end-to-end system for computer-assisted fact-

checking.” Using natural language processing, machine learning, and database querying

techniques, ClaimBuster matches statements to existing fact-checks in real time.

3http://www.niemanlab.org/2018/04/truth-goggles-are-back-and-ready-for-the-next-era-of-fact-
checking/
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Figure 3.1: An overview of the ClaimBuster system that highlights the 1) claim monitor,
2) claim spotter, 3) claim matcher, and 4) claim checker. Reprinted from [25].

ClaimBuster is a multi-part system, diagrammed in Figure 3.1:

• Claim Monitor : This element monitors texts from a variety of sources including the

web, broadcast media, and social media.

• Claim Spotter : This system identifies “checkworthy factual statements” from the text

provided from Claim Monitor using supervised learning. Some of the most important

features include sentence sentiment, past tense verbs, and cardinal numbers.

• Claim Matcher : This is the part of the system that is relevant to the claim-document

discovery process. Given a “checkworthy” factual statement, the claim matcher searches

the database of known fact-checks for a relevant match. As for the technical imple-

mentation of this feature, all that is provided in the 2017 paper is that “the system

uses two approaches to measuring the similarity between a claim and a fact-check. One

is based on the similarity of tokens and the other is based on semantic similarity.” If

the claim is not in the existing fact-check repository then it is processed by the Claim

Checker. At Computation + Journalism 19, an update was given into the progress of
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Claim Matcher. The authors came to the conclusion that the claim-document discovery

problem required a human-in-the-loop [1].

• Fact-check Reporter : Synthesizes the results of Claim Matcher and Checker on the

project website.4

This section illustrates 1) the structure of current automated fact-checking systems and

2) that claim matching is only one part of the automated fact-checking pipeline.

3.5 Sociotechnical Perspective

The term “sociotechnical systems” originated in organizational development, as a way to

theorize about the interactions between workers and technology in English coal mines in the

1940s [50]. However, the term has been adopted by the Science and Technology Studies

(STS) community to broadly discuss the complex relationships between social systems and

technical components. In this subsection, I will focus on two papers that not only inform

the methodology of this thesis but provide key insights in the related literature.

In “Fairness and Abstraction in Sociotechnical Systems,” Selbst et al. contend that “to

treat fairness and justice as terms that have meaningful applications to technology separate

from a social context is...to make an abstraction error” [47]. Thus, they adopt a sociotechnical

lens and identify five “traps” (common mistakes) of the fair machine learning (fair-ML)

community. The authors explain that “each of these traps arises from failing to consider

how social context is interlaced with technology in different forms, and thus remedies also

require a deeper understanding of ‘the social’ to resolve problems.” Below are the five traps:

1. The Framing Trap: “Failure to model the entire system over which a social criterion,

4 idir.uta.edu/claimbuster
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such as fairness, will be enforced.”

2. The Portability Trap: “Failure to understand how repurposing algorithmic solutions

design for one social context may be misleading, inaccurate or otherwise do harm when

applied to a different context.”

3. The Formalism Trap: “Failure to account for the full meaning of social concepts,

such as fairness, which can be procedural, contextual, and contestable, and cannot be

resolved through mathematical formalisms.”

4. The Ripple Effect Trap: “Failure to understand how the insertion of technology into an

existing social system changes the behaviors and embedded values of the pre-existing

system.”

5. The Solutionism Trap: “Failure to recognize the possibility that the best solution to a

problem may not involve technology.”

The authors then proceed to describe case studies of each of the five traps and pro-

vide solutions. One such solution, targeted towards addressing the “framing trap,” is by

adopting a heterogeneous engineering approach [29] that includes inside “the boundaries of

abstraction... people and social systems” as well as “local incentives and reward structures,

institutional environments, decision-making cultures and regulatory systems.”

In summary, Selbst et al. advocates that the “social must be considered alongside the

technical in any design enterprise,” rather than as an afterthought. They caution that

technical systems that do not critically examine the social context and systems that exist are

unlikely to be fair or just. They develop five categories common pitfalls listed above of current

fair-ML models that can be used to discuss the shortcomings of other technical systems.

Finally, the authors make some broad suggestions about how the fair-ML community can

engage in more socially aware development in the future.
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The second sociotechnical analysis “Why do People Share Fake News? A Sociotechnical

Model of Media Effects” adopts a sociotechnical perspective of why people share problematic

information online and finds that given the results, fact-checking and media literacy efforts

are unlikely to succeed [34]. Marwick details her three-part sociotechnical model in the table

and the corresponding methods in Table 3.2. From this table, it is clear that a wide variety

of methods can be used to study sociotechnical effects.

Figure 3.2: An overview of the agents and methods described by Marwick. Reprinted from
[34].

Marwick finds the combination of the following behaviors and conditions from the three

outlined agents account for why people share fake news.

1. Actors : “Partisan Americans share fake news stories that support their pre-existing

beliefs and signal their identity to like-minded others.

2. Patterns : “Successful problematic information builds on deep stories’ found in main-

stream conservative media or makes polysemic appeals that cross party lines.”

3. Affordances : “Algorithmic visibility and social sharing massively increases the scale

and spread of problematic information.”
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Marwick argues that these results call into question fact-checking and media literacy

efforts. She cites The Daily Caller’s reaction to Reviewed Claims, proposing that such

fact-checking systems “may cause even more resentment and anger towards perceived liberal

outlets, contributing to decreased trust.” Marwick finds that her sociotechnical analysis calls

for “a holistic approach” to thinking about solutions to sharing problematic information.

In summary, Marwick breaks down media effects into different categories to discuss why

fake news spreads. She relies on a variety of different methods to understand why fake news

spreads online and finds that fact-checking and media literacy efforts are unlikely to stem

the spread of online problematic content.

3.6 Summary of Relevant Literature and Background

Listed below are the key takeaways from the past two chapters:

1. Online fact-checking has existed for over 25 years and is a growing field. Of the over 150

global organizations, there is a range of methodologies and objectives. Fact-checking

is one of the key ways online information seekers are told to verify the credibility of

sources, but research is mixed on fact-checking as a strategy to fight misinformation.

2. Automated fact-checking has the promise of 1) increasing the reach of fact-checking, 2)

decreasing the time it takes for fact-checks to be applied to new online content. Fully

automated fact-checking appears to be a distant dream. There are many attempts to

create automated systems that either automate a piece of the fact-checking pipeline or

have a “human-in-the-loop.”

3. Reviewed Claims was a 2017-2018 feature deployed on Google search that incorporated

an automated claim-document matching system. The feature was removed while under
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substantial critique from conservative news outlets. Google cited “bugs” in the feature

as the reason it was removed from the SERP.

4. The sociotechnical perspective involves the consideration of social actors and context

in technical systems. Technical systems that do not consider social actors are unlikely

to be successful.



Chapter 4

Technical Exploration of Reviewed

Claims

The objective of this chapter is to understand the technical workings of the claim-document

discovery process [54] that was most likely a key part of the Reviewed Claims system. What

was the design the system? What limitations did Wang et al. [54] recognize in their system?

What are other system design limitations?

4.1 Definitions

The following are definitions as provided in the Wang et al. paper, and I will adopt the

terminology presented below for the remainder of my thesis.

Claim: the statement that is being fact-checked.

Claimant: the person or organization making the claim.

Verdict: the conclusion on the veracity of the claim according to the fact-checker.

29
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Fact-checking article: an article that examines a single claim and produces a verdict.

Fact-checking article: an article that examines a single claim and produces a verdict.

Claim-relevant document: given a fact-checking article with claim c, a claim-relevant

document is a related document that addresses c.

Supporting document: a relevant document that supports a claim c.

4.2 System Design

For claim matching to work, the system should identify with high confidence as many claim-

relevant documents that support a claim c as possible.

Figure 4.1: An overview of the “claim-document discovery process.” Reprinted from [54].

The system is summarized below:

“We start from a set of fact-checking articles. For each article, we craft a set of

queries and use a search engine to find a set of related articles. We then build a

binary classifier to predict whether a related document is a relevant document.

Finally, among all the relevant documents, we classify the stance of each relevant
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document w.r.t. the fact-checking article and its claim” [54].

1. Finding Related Documents (i.e. candidate generation): The first task in the system

is to find as many documents that “bear some topical or lexical similarity to the fact-

checking article.” Two approaches are taken to identify related documents.

(a) Navigation approach: Wang et al. collects all outgoing links and citations from

fact-check articles. This approach is not extremely valuable, as the authors find

that most of these documents are related but not relevant to the fact-check.

(b) Search approach: Wang et al. generates queries from the fact-check article and

collects the Google search results that appear. Generating the ideal queries is a

sizeable challenge. The authors list three different methods: 1) the text of the

title and claim of the fact-checking article or associated ClaimReview data, 2)

entity annotated representation of the title and claim, and 3) click graph queries

of the 50 most popular search queries that led to the fact-check.

The top-100 Google search results were collected for each query. In total, each fact-

checking article generated 2,400 related documents for relevance classification. The

click graph queries produced the best results of the three query generation strategies.

Together, the three approaches had a recall1 of 80%.

2. Relevance Classification: The authors construct a gradient boosted decision tree model2

[55] to determine which of the generated candidate documents are relevant to the fact-

check article. This classifier surpassed the accuracy of other relevance classifiers, with

an accuracy of about 80%.

The features of the model are all different measures of similarity between the fact-check

article and the candidate document. They include:

1 Recall is defined as the percentage of pertinent documents retrieved in terms of all pertinent documents.
2 The gradient boosted decision tree is name of the machine learning model that the authors use to train

and test their classifiers.
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(a) Entity3 similarity: To find the entity similarity, first, find the union of all the

entities from the text of the claim (not of the entire fact-check article) and the

entire text of the related document. Create two vectors, one for the fact-check

article and one for the claimant document, with an associated confidence score

for each entity. Then, find the cosine similarity4 between the two vectors.

(b) Content similarity: In addition to the features that find the cosine similarity

between the entire content of the fact-checking articles and the entire candidate

document, there are many other features comparing the similarity of the claim

text to the headline or title of the candidate document and comparing the claim

text to individual sentences in the candidate document. This was identified as

a particularly valuable feature. Claim text to candidate document paragraphs

was attempted, as well as comparing “selected sentences” from the fact-check to

sentences in the candidate document.

(c) Date published: Fact-checks and candidate documents that were published within

a few days were more likely to be relevant.

3. Stance Classification: The authors create a gradient boosted decision tree model to

determine whether a relevant document supports or contradicts the claim. Assuming

that the fact-check article’s verdict is false, relevant documents that support the claim

are the documents that are the most important to discover as they are propagating

problematic information.

The authors adopt the strategy of attempting to identify contradicting relevant doc-

uments and pruning them out. To identify contradicting documents, Wang et al.

compares “key textual evidence” (headline, title, important sentences) from the rel-

evant document and the fact-check article claim. If any of the key textual evidence

and article do not have a similarity score of greater than 0.8, the “key text” is not

3Entities include names, organizations, locations, etc.
4Cosine similarity is a common measure of similarity in text mining and information retrieval.
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further considered. The remaining key text is concatenated with the sentence that

comes before and after it. This allows for statements like “Does X happen? No, it

does not” to be correctly analyzed.

Wang et al. constructed a lexicon of words that indicate a contradiction. They observe

that headlines of fact-checks often contradict the claim. They extract the unigrams5

and bigrams6 from <claim, contradicting headline> pairs of approximately 3,000 fact-

checking articles. They then constructed a vocabulary using the unigrams and bigrams

with the greatest frequency. Some popular grams that indicated contradiction included:

fake, purportedly, hoax, rumor, made up, fact check, not true, and no evidence. Then,

for all the remaining key components (the key text + surrounding sentences), all the

unigrams and bigrams are extracted and then a vector is constructed where each ele-

ment of the vector is the frequency of a vocabulary word that was present in the key

components.

4.3 Evaluation of Claim-Document Discovery System

Two different corpora are used to evaluate the claim-document discovery system. The first

was a manual corpus, which was used to measure the performance of the candidate genera-

tion. Crowd workers7 were recruited to discover as many supporting documents as possible

through any means they wished. The recall of the candidate document generation was high

(80%).

The second corpus, an unlabeled corpus was used to assess the accuracy of the classifier.

The authors filtered out any fact-checks where the ClaimReview was missing a claimant,

5Unigrams of “to be or not to be”: to, be, or, not, to, be
6Bigrams of “to be or not to be”: to be, be or, or not, not to, to be
7Crowd workers are people who do crowd sourced tasks. Crowd sourced tasks often require a large pool of

workers to perform a small task. Platforms like Amazon Mechanical Turk facilitate the interactions between
those with tasks (like researchers) and crowd workers.
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a claim, or a verdict. Additionally, duplicates and plagiarized fact-checks were excluded,

in addition to fact-checks from organizations that were not part of the International Fact

Checking Network. After filtering, approximately 15,000 fact-checking articles remained in

the corpus. Then, to assess the relevance classifier, a sample of 8,000 of the 33 million

(15k fact-check articles * 2.4K candidate documents) <fact-check, candidate document>

pairs was presented to English-speaking crowd workers (with no additional qualifications).

Workers were asked “Does the candidate document address the claim?” Three workers were

asked about each claim (each worker could rate up to 6 claims). A <fact-check, candidate

document> pair was considered relevant if at least two of the three workers found that the

candidate document addressed the claim. The relevance classifier achieved 81.7% ± 1.8%

accuracy (majority class label was 50%), which surpasses the accuracy of similar models. As

for the misclassifications, the authors determine that they were primarily caused by either

1) bad inputs (e.g. erroneous publication dates, “poor” titles) or 2) not enough text (e.g.

forum pages, online videos).

1,200 relevant documents were sampled to do stance detection. The same worker setup

is adopted (English speaking, 3 workers per <fact-check, relevant document pair>, up to

6 claims), and workers were asked to classify the stance of each document as supporting,

contradicting, neither, or can’t tell. For 12% of pairs, two raters did not agree, these results

were excluded. Their stance detection classifier achieved an accuracy of 91.6% (with 57% of

documents being supporting documents) surpassing other models by approximately 2%.

4.4 Limitations Described in the Paper

The authors briefly discuss some examples where their system fell short. To explain why

candidate generation did not include all related documents, the authors cite bad query

construction and unfocused fact checks. They find that sometimes the article title and claim
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text are not good summaries for the content of the article. Moreover, they notice that when

the fact-checking article covers several topics, the generated summaries may not be valuable.

As for the relevance classification, Wang et al. make two observations. The first is

that sometimes the claim is a minor detail in the related document (ex. the claim is only

mentioned once in passing). The second observation is that there is substantial variance in

the number of relevant documents in a set of related documents.

The stance classification approach has shortcomings. The authors observe that some

stance classifications require either an understanding of important context (i.e. domain

knowledge) or an ability to interpret sarcasm. The authors note that current natural lan-

guage processing techniques are not yet able to handle these challenging cases.

4.5 Additional Limitations

Defining Relevance in Fact-checking

RQ2 and RQ3 of this thesis focus on conceptions of relevance in fact-checking, and more

specifically claim matching. In Wang et al. the definition of relevance is broadly construed.

Recall that the authors define a claim-relevant document as: “a related document that ad-

dresses a claim, c.” However, in their claim-document discovery process, not all “relevant

documents” are relevant matches. The relevance of documents is determined in step two of

their three step system. The stance classification of all relevant documents is a third step

that determines whether the relevant documents are relevant claim matches. We could define

relevant claim matches as relevant documents that support the claim (i.e. the stance classi-

fication model’s determination), but this is never explicitly laid out in the paper. Moreover,

supporting the claim is only defined by the model as not rejecting the claim. So, as long as
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words like “hoax”, “fake news”, etc. don’t appear, then the document supports the claim.

So, “relevant documents that support the claim” is not a definition, but rather a post-hoc

definition resulting from the reality of the designed system. However, Wang et al. does offer

some clarification, explaining that “the claim-relevance discovery problem does not require

the literal or precise claim to appear in the document but rather aims to find ones that seem

to align in spirit.” Wang et al. do not delineate qualifications for aligning in spirit.

Thus, understanding if the “align in spirit” characterization of relevant matches is sup-

ported by information seekers or news publishers is a major focus of the rest of this thesis. In

Chapter 5, I ask Wellesley undergraduate students and crowd workers to assess the relevance

of some Reviewed Claims fact-checks. While I will save the majority of the analysis of those

studies for 5.3, there does seem to be agreement among users and platforms that the exact

claim does not have to be present in the document for there to be a relevant match. The

challenge seems to be agreeing on what “aligns in spirit.” In Chapter 6, I extend this analysis

to claimants (news publishers) and fact-checking organizations, which adds additional layers

of complexity.

Examining the Claimants in ClaimReview

Bill Adair of PolitiFact believes that “ClaimReview is one of the untold success stories of the

fact-checking movement.”8 However, the Duke Reporters’ Lab estimates that approximately

half of fact-checking organizations have not integrated the ClaimReview markup into their

fact-checks.9 As of October 2018, there are ongoing efforts to increase the adoption rates of

the ClaimReview schema, including via the “Share the Facts” widget that has created an

easy to use user interface for fact-check publishers.

While ClaimReview was developed in 2015, ideas about structured data being part of the

8https://www.poynter.org/fact-checking/2018/google-is-building-a-search-engine-for-fact-checks
9https://reporterslab.org/a-better-claimreview-to-grow-a-global-fact-check-database
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web have existed since the earliest discussion of the Semantic Web in the early 2000s where

it is described as:

“The Semantic Web will bring structure to the meaningful content of Web pages,

creating an environment where software agents roaming from page to page can

readily carry out sophisticated tasks for users... [9]”

While the Semantic Web may not have come to fruition, structured data has become an

increasingly important part of the web, especially on search. For example, robust fact-check

structured data has always been viewed as a key prerequisite of automated fact-checking

systems. The lack of such data was cited as a significant hindrance to the end game of fully

automated real-time fact-checking [24]. However, since then, schema.org’s ClaimReview

markup, as well as the Duke Reporter’s Lab/Jigsaw developed Share the Facts widget10,

have enabled fact-checks to appear on the SERP.

To create their corpus of fact-checks, Wang et al. depend on the ClaimReview markup

that fact-checking organizations embed into fact-check articles. Not all fact-checks with

ClaimReview are included in Wang et al.’s corpus: they filter out “any invalid markup

where the ClaimReview fails to parse or is missing any of the three key fields (claimant,

claim, verdict).” If there are variations in fact-checking organizations’ implementation of

ClaimReview, this could limit the efficacy and reach of automated fact-checking systems.

After observing inconsistencies in ClaimReview markup, I performed a systematic analysis

of ClaimReview implementation.

I collected all of the fact-checks from the three most established fact-checking organi-

zations: Snopes, PolitiFact, and Factcheck.org. This is the first publicly available detailed

analysis of ClaimReview implementation of major fact-checking organizations (see Figure 4.2

and Table 4.1).

10 http://www.sharethefacts.org
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Figure 4.2: ClaimReview markup adoption rates from 2015-2018. Since, 2015, there has
been a rapid adoption of ClaimReview markup. By 2018, almost all articles by Snopes and
PolitiFact contained ClaimReview.

Snopes: Established in 1994, Snopes is arguably the oldest and most well-known online

fact-checking organization. Snopes fact-checks are broken down into 45 categories11 including

racial rumors, science, and humor. Not all fact-check article have category tags, so I chose

to use an automated Selenium browser12 to navigate through the “Fact-check” section of the

website. Snopes has a “News” section13 of their website where they attempt to limit the

spread of misinformation by providing a credible rundown of the day’s news. These news

articles do not meet the API’s definition of fact-checking (see Chapter 2.1), so they have

been excluded from my analysis. The metadata containing the ClaimReview metadata was

in the form of JSON-LD (JSON for Linking Data).

Snopes published 1,613 fact-checks in 2018 (approximately 4 fact-checks per day). In

11https://www.snopes.com/archive
12Selenium is a tool that enables users to programmatically control a web browser.
13https://www.snopes.com/fact-check/
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total, Snopes published 11,807 articles from 1995-2018. Of those, 6,680 contain ClaimReview

metadata.

PolitiFact: Founded in 2007, PolitiFact14 was originally owned by the Tampa Bay Times

and is now controlled by Poynter Institute for Media Studies. Its mission is to fact-check

political figures. Some pages have the JSON-LD metadata present on Snopes sites and others

have microdata format present on FactCheck.org’s pages. The microdata format is to be

expected on the PolitiFact pages as it is the output of the user interface PolitiFact developed

called the “Share the Facts” widget, as a way to increase metadata adoption rates.

In total, I collected 15,829 articles15 from PolitiFact. In 2018, PolitiFact published 1,392

fact-checks. Of the 15,829 articles, 3,766 contained Claim Review markup.

Factcheck.org: Founded in December 2003, FactCheck.org has existed for 15 years as

part of the Annenberg Public Policy Center and primarily fact-checks politicians. Initially,

I collected 1,607 articles from FactCheck.org that were written between 2003 and 2018.

However, like Snopes, FactCheck.org publishes other content besides fact-checks including a

mailbag that contained quizzes and daily summaries. However, unlike the Snopes website, I

was unable to easily differentiate from the website structure between fact-checks and other

content. Closer examination of the headline structure of articles revealed that content with a

date in the title followed by a colon (e.g. “April 24: Fact-Checking, Jobs, Climate Change”)

were not fact-checks. After filtering, 1,395 fact-checks remained. Of the 1,395 remaining

fact-checks, only 135 (10%) contained the ClaimReview metadata. Because of the small

number of articles with ClaimReview markup, I have only included PolitiFact and Snopes

in further analysis.

Wang et al.’s method of only using fact-check articles that explicitly name a claimant

excludes almost all the fact-check articles created by Snopes, which is the largest producer

14PolitiFact.com
15Not all were fact-checks and about 20 pages were no longer active URLs.
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of fact-check articles. Of the 7,063 Snopes articles I scraped that contain the ClaimReview

markup, only 1,297 (18%) contain a claimant name in the ClaimReview markup. Of those,

1,190 contain the source name “Multiple Sources.” Thus, only 1.5% of Snopes fact-checks

with ClaimReview name a specific claimant. Thus, there are additional questions to be asked

about how the exclusion of so many fact-check articles impacted the training and testing of

the Wang et al. model. Only eight claimants were listed more than once in ClaimReview

markup by Snopes: Breitbart News (5), Last Line of Defense (4), Neon Nettle (4), 8shit.net

(2), Ladies of Liberty (2), Freedom Daily (2), Fox News (2), and All News 4 Us (2).

However, every PolitiFact article has a claimant listed. Of the 404 claimants that are

mentioned more than once (that comprise 74% of all claimants listed), only 28 (7%) are news

publishers. 80% of the claimants are public figures, usually politicians (e.g. Donald Trump

(516), Hillary Clinton (107)). Thus, by only including fact-checks with a claimant, Google’s

algorithm is “throwing away” most of the data. It is possible that Google has a shared

database with fact-checkers or another algorithm to uncover more claimants, but there has

been no media reports or other indication in the paper [54].

Variance in ClaimReview Implementation

From the analysis in ClaimReview in the previous subsection, it is clear that there is some

variation in the way fact-checking organizations use the fields of ClaimReview markup. This

is a common trade-off of decentralized data systems that Wang et al. recognize. Nev-

ertheless, there has been no comparison of ClaimReview implementation between various

fact-checking organizations. I have organized the prevalence of various features in the Claim-

Review markup in Table 4.1.

Of the 32 fields, 18 fields appear in both ClaimReview markup. Only 14 fields appear

in every ClaimReview for both of the largest fact-checkers. These substantial differences in



CHAPTER 4. TECHNICAL EXPLORATION OF REVIEWED CLAIMS 41

ClaimReview
Fields

PolitiFact Snopes Fields cont’d PolitiFact Snopes

@context 3766 7063 itemReviewed/author/image 3766 0
@type 3766 7063 itemReviewed/author/jobTitle 3766 0
author 3766 7063 itemReviewed/author/name 3766 1297
author/@type 3766 7063 itemReviewed/author/sameAs 3766 0
author/logo 0 7063 itemReviewed/datePublished 3766 0
author/name 0 7063 itemReviewed/name 3766 0
author/sameAs 0 7063 reviewRating 3766 7063
author/twitter 28 0 reviewRating/@type 3766 7063
author/url 3766 0 reviewRating/alternateName 3766 7063
claimReviewed 3766 7063 reviewRating/bestRating 3766 7063
claimReviewSiteLogo 28 0 reviewRating/image 3766 7063
datePublished 3766 7063 reviewRating/Name 3766 7063
itemReviewed 3766 7063 reviewRating/name 28 0
ItemReviewed/@type 3766 7063 reviewRating/ratingValue 3766 7063
itemReviewed/author 3766 1297 reviewRating/worstRating 3738 7063
itemReviewed/author/@type 3766 0 url 3766 7063

Table 4.1: Fields present in ClaimReview markup of Snopes and PolitiFact. There are a total
of 3,766 PolitFact articles and 7,063 Snopes articles. The differences in the implementation
of the itemReviewed related fields are especially important given Wang et al.’s [54] approach
for claim matching.

implementation reflect differences in the fact-checking organization approaches as well. For

example, as mentioned in the previous subsection, PolitiFact primarily fact-checks people,

not news publishers. Thus, there is the field jobTitle in ItemReviewed/author. More thought

is needed about whether ClaimReview is truly standardizing fact-checks.

4.6 Summary

In this chapter, I provide a detailed description and analysis of the 2018 paper “Relevant

Document Discovery for Fact-Checking Articles” which described the technical implemen-

tation of the claim-matching component of the Reviewed Claim system. There are several

important takeaways from this chapter.

1. The objective of “Relevant Document Discovery for Fact-Checking Articles” is to iden-

tify a set of documents that are relevant and “align in spirit” to a given fact-check
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article. The authors were able to beat the baseline performance of similar approaches

by using a three step system: 1) candidate generation, 2) relevance classification, and

3) stance classification.

2. The outlined system relies upon existing ClaimReview data to identify and compare

fact-check articles to candidate documents. However, ClaimReview implementation

rate and style depends significantly on the fact-checking organization.

3. Wang et al. define relevance as: “given a fact-checking article with claim c, a claim-

relevant document is a related document that addresses c.” And later that definition

is supplemented with the “note that the claim-relevance discovery problem does not

require the literal or precise claim to appear in the document but rather aims to find

ones that seem to align in spirit.” As explored in future chapters, this definition does

not fully model the complex idea of relevance.

In the following chapters, I explore how the claim-document discovery process described

in this chapter models information seekers and other stakeholders’ notions of relevance and

fairness.



Chapter 5

A User-Centered Examination of

Reviewed Claims

The Reviewed Claims feature was designed for information seekers to better assess the cred-

ibility of news sources. Thus, the ways in which they perceive the Reviewed Claims feature

should be of the utmost importance. This chapter describes how information seekers de-

fine relevance and generate justifications information seekers adopt to determine whether a

claim is relevant to a document. Using a dataset of algorithmically assigned <fact-check,

news article> pairs (i.e. <claim, document> pairs discussed in Chapter 4) and various pop-

ulations of users’ ratings and justifications of relevance, I analyze whether there is or can be

a common conception of relevance among information seekers.

43
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5.1 Data

As part of the Cred Lab’s long-term research on web literacy and credibility of online sources,

the Cred Lab1 regularly monitors various Google search engine result pages (SERP). That

is, for many query phrases, Google’s search result pages are automatically collected and ana-

lyzed. In early January 2018, as part of a large data gathering about media organizations in

the United States [32], I collected data from various lists about news publishers (newspapers,

online news websites, fake and satire news, etc.)2.

We collected the data of approximately 8,000 news publisher SERPs. Analyzing the

content of over 8,000 collected SERPs, we identified 59 news publishers whose Knowledge

Panels contained the Reviewed Claims tab. In this thesis, I examine 221 fact-checks that

appeared in 59 Reviewed Claims tabs and focus my analysis on 118 algorithmically assigned

fact-checks.

There were 119 algorithmically assigned fact-checks, but one claimant document only

contained a video and that video was no longer accessible, so it was impossible to assess

the relevance of the fact-check. 91 other fact-checks referred to the news publisher via the

fact-check text, hyperlink, or metadata and 11 articles were excluded for analysis because I

was unable to access the claimant document.

1 I am extremely grateful to my fellow Cred Lab members and Professor Eni Mustafaraj for making all
of this data available to me for this thesis.

2 Details about the lists used for collection are available in the Appendix
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5.2 Methods and Results

Author Labeling

I manually labelled 118 <claimant document, fact-check article> pairs (which did not ex-

plicitly mention the document in the fact-check) as “relevant” or “irrelevant,” denoting the

confidence level (low, medium, high) for each pairing. I defined a match as relevant if the

fact-check applies to the central claim of the document. This process can be regarded as

the human replication of the “relevance classifier” and assessment of whether a <claim,

document> pair aligns in spirit as defined in [54].

Confident Somewhat Confident Not confident
Relevant (n=93) 60 24 9
Not Relevant (n= 25) 3 12 10

Table 5.1: Labels and confidence levels for the 118 algorithmically assigned fact-checks. It
was often more challenging to label a match as “not relevant” than “relevant.”

Expanded Labeling Effort

Because I had low confidence in several of my relevance determinations, I selected 30 pairs

that I was not confident about in the first pass of manual labelling. I recruited three under-

graduate Wellesley College students to independently assess the relevance of these matches.

I chose three raters because Google relied on three crowd workers to determine relevance

(see Chapter 4). This was a labor-intensive task and took labelers between 5-10 minutes to

evaluate each claim and provide justifications3.

From the three raters, I ascertained an estimate of the accuracy of the overall Reviewed

Claims classifier. The raters were instructed to read only the claim of the fact-check in

the ClaimReview markup and the claimant document. If they were not confident in their

3 Raters were compensated by the Cred Lab at their typical hourly rate (of $13/hr)
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relevance assessment, they were then encouraged to read the entire fact-check article. In the

majority of cases, the raters read the entire fact-check. Raters were instructed to not pass

judgment on the veracity of the claim itself or to read sources other than the fact-check.

Raters were asked to assess matches as relevant or irrelevant, as well as provide a high,

medium, or low confidence rating in their judgments. All of this data was labeled in a

spreadsheet. Of the 30 selected claims that the three raters to analyzed, our raters had a

fair agreement rate (κ = 0.29)4, indicating the difficulty of this task. 16 of the 30 claims

(53%) were rated as irrelevant to the assigned fact-check by at least two raters.

The raters were asked to provide a 1-3 sentence justification of their labels. Then, I

generated five general justifications for irrelevance using a grounded theory approach to

qualitatively code [16] the three undergraduate students raters justifications for why the

documents were or were not relevant to their algorithmically assigned fact-check articles.

From these responses, five justifications emerged that explain why a fact-check may not be

relevant. Rater responses often included multiple justifications. The justifications included:

(a) The fact-check concerns a minor detail in the article.

(b) The fact-check verifies a different claim than what was in the article.

(c) The fact-check and article cover the same general topic but differ on details.

(d) The fact-check and article are framed differently.

(e) The fact-check is more general than the article.

The labelers and I then met for two hours to reconcile their findings. Research has

found that a small number of knowledgeable raters can outperform a large number of crowd

workers [37] and reconciliation of raters’ judgments is commonly performed in HCI studies.

The resulting agreement rate of agreement is κ = 0.60, which indicates moderate agreement

4 https://en.wikipedia.org/wiki/Fleiss%27kappa
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between raters. The same 16 of the 30 claims (53%) were rated as irrelevant to the assigned

fact-check by at least two raters.

Amazon Mechanical Turk Study

Then, I designed a Amazon Mechanical Turk (MTurk) study with IRB approval. Amazon

Mechanical Turk5 is an online crowd work platform that allows researchers to easily recruit

and compensate study participants by having workers complete various tasks, known as

HITs. There were two objectives in this phase:

1. Ascertain whether crowd workers had similar relevance determinations as the three

raters.

2. Test if crowd workers selected the same justifications for a given claim.

Amazon Mechanical Turk studies are typically recognized to be substantially more de-

mographically diverse than standard college student samples, and slightly more diverse than

standard Internet samples [13]. As further detailed in the Limitations section, this sample

was not representative of the U.S. adult population. Moreover, I recognize the potential

for ethical abuses on Mechanical Turk and have followed academic best-practices of survey

design and worker compensation6.

Participants were asked for standard demographic information as well as about their

political affiliation and news consumption habits. Following best practices for crowd worker

payment, workers were compensated $5 per HIT for a survey that was designed to take

around 30 minutes. The instructions mentioned that the task required close reading. To

screen for high-quality results, I rejected HITs where Turkers who took less than 5 minutes

5 https://www.mturk.com
6 http://wiki.wearedynamo.org/index.php/Guidelines for Academic Requesters
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to complete the survey, as it would be impossible to read three article pairs in such a

short amount of time. In the first round, thirteen people completed the survey (three were

rejected). In the second round, eleven people completed the survey (one was rejected). The

mean completion time for the two rounds were 22 and 15 minutes respectively.

Compared to the crowd worker qualifications adopted by Wang et al. [54], stringent

worker qualifications were placed on HITs. Specifically, I required 98% HIT approval rate,

U.S. residency, >1,000 accepted HITs, and high political knowledge. To ensure a high level

of political knowledge, I included political screening test that asked: 1) who is the Senate

Majority Leader?; 2) Which amendment protects the right to keep and bear arms?; and

3) who was the U.S. Secretary of State in 2017? The qualifications and screening test are

modeled after the experiment discussed in [12], which employed crowd workers to label the

partisan and ideological leanings of various news articles.

Three pairs of <fact-check, claimant document> were shown to participants. Because I

first implemented a pilot of showing three stories in a randomized order to 10 participants, I

continued using the format of exposing the same three stories to participants in the second

round of pairs. Similar to the rating scheme I employed with the three raters, participants

were first asked to make a determination of relevance and then provide a confidence rating

of their decision. This is an unconventional method to ascertain survey responses, a more

traditional survey may have combined the two questions with Likert scale-based questions,

but part of my objective was to assess the accuracy of the binary Reviewed Claims classifier.

A Likert scale has the ambiguity of the neutral option, but the relevance classifier described

in [54] does not have a neutral option.

Because one objective was to assess the relevance of a fact-check given the article’s con-

tent, my goal was to remove all potential sources of bias from non-content related features,

including source identifying content or references to other media organizations. Thus, I

provided links to static versions of the text of the fact-check and article. I removed from
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these copies of the page news source identifying information and styling as well as all exter-

nal hyperlinks. In addition, I changed all the references to other media organizations (e.g.

YourNewsWire, The Washington Post) to generic sounding news organization names (e.g.

Denver Herald, Atlanta Post).

One objective of this experiment was to assess whether information seekers can agree on

the relevance justifications across individual <fact-check, news article> pairs. To measure

this, instead of leaving the justifications open-ended, I created a multiple choice question

bank with the five possible justifications described in the previous section as well as a sixth

option for relevant matches: “the article and fact-check are a good match.” Because discus-

sions with the three student raters confirmed that not all of the justifications individually

warranted a fact-check to be relevant or not relevant, but rather it affected raters’ confidence

scores, I decided to present the justifications to survey participants even when they had rated

a story as relevant. Further discussion of the justifications will be included in Chapter 6.3.

Claim # of raters # of Turkers
who found who found
the claim relevant the claim relevant
(n= 3) (n=10)

California will have the “highest gas tax in the nation” once its 12 cent gas tax hike goes
into effect.

2 10

Says Ted Kennedy met “with the KGB in order to beat Ronald Reagan in 1984.” 2 9
“The temperature is not rising nearly as fast as the alarmist computer models predicted.
You know, it’s much, much less, factors of 2 or 3 less.”

2 9

Police in Charlottesville were issued a “stand down” order and told to let violence happen. 1 10
Bill Clinton was expelled from Oxford University for raping a British classmate named
Eileen Wellstone.

0 10

A campaign ad attacking Republican Sen. Jeff Flake falsely says that he hasn’t worked
with President Donald Trump to ‘repeal Obamacare.’

0 5

Table 5.2: Rater evaluations of the six claims shown to Mechanical Turkers. Only 1 claim
was found to be not relevant by more than 1 crowd worker (see Table 5.3).

Of the six claims examined by the raters, five were found to be relevant by nine or

more raters (see Table 5.2 for more details). On average, 3 different justifications appeared

across raters for a given <fact-check, article> pair. Of the five claims that at least nine

raters found relevant, only an average of 5.2 raters selected the justification that “The fact-

check and article were a good match.” See the breakdown of justifications of the claim: “A
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campaign ad attacking Republican Sen. Jeff Flake falsely says that he hasn’t worked with

President Donald Trump to repeal Obamacare.” See Table 5.3 for more detail.

Marked
relevant

Marked
not

relevant
The fact-check and article cover the same general topic but differ on details. 4 1
The fact-check verifies a different claim than what is in the article. 1 3
The fact-check concerns a minor detail in the article. 1 1
The fact-check and article are framed differently. 1 0

Table 5.3: Justifications selected for the claim: A campaign ad attacking Republican Sen.
Jeff Flake falsely says that he hasn’t worked with President Donald Trump to “repeal Oba-
macare.” There were a wide range of justifications used to explain raters relevance assess-
ment. No crowd worker used the “good match” justification, despite five crowd workers
rating the claim as relevant. Note: Crowd workers could select more than one justification.

5.3 Analysis

These three qualitative labeling exercises produced some novel findings and some new ques-

tions. First, it is significant that at least 1197 of the 221 fact-checks (57%) visible on

Reviewed Claims, were algorithmically assigned. This significant portion reveals that

the conceptual challenges of determining relevance in terms of the algorithmic assignment

of fact-checks is worthy of substantial consideration given the dependence of the Reviewed

Claims system on such matches.

If the ability to agree on a common definition of relevance is a positive outcome, as I

believe it is, the most promising finding of this chapter is the significant improvement in

the agreement rate after the three independent raters discussed their relevance

assessments. Note that the final agreement rate was 0.6, which is technically classified as

moderate agreement, but 0.61 is classified as “substantial agreement.” This indicates that

7 I remark “at least 119” because 1) I was unable to access all claimant documents and 2) I was overly
cautious in labeling something an algorithmically assigned fact-check. It was most likely unnecessary to
exclude results that was only mentioned as an archive.is link to that site, with no mention of the source
name or url in the text, source code, or ClaimReview markup.
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at least among information seekers, there is the possibility for a common conception of a

relevant fact-check.

The labeling exercise with crowd workers does not show any meaningful agreement with

the Wellesley student raters. At least half of the crowd workers found every claim

to be relevant, despite at least two Wellesley raters finding three of the six claims not

relevant. One possible explanation for this discrepancy is that the Wellesley student raters

gave this task more attention and thought than the crowd workers. However, comparing the

mean completion times of the accepted HITs and the self-reported times for the Wellesley

raters, there is not a substantial difference. Another possible explanation is that Wellesley

students and crowd workers are two distinct populations who have substantial differences in

their conception of relevance. Further experiments are needed to determine the cause of the

discrepancy.

Before the reconciliation took place, I analyzed the independent raters’ justifications

and generated six justification responses to add to the Mechanical Turk multiple choice

justification question (five responses for potentially not relevant matches and one for relevant

matches). Before we began the reconciliation process, I presented the three independent

raters with the justifications and solicited their suggestions for improvement. The raters were

positive about the six justifications I generated, and as we went through the reconciliation

process they were able to assign at least one of the justifications to the <article, fact-check>

pair. However, while all three raters agreed that while the justifications fit well,

“there can be differences in the match without reaching the threshold for being

a bad match.” This comment indicated that the justifications would be an insufficient tool

for understanding relevance. I added an “Other” option to the justification options with an

associated text box, in case that crowd workers had better suggestions, but no workers added

their own justification. Sure enough, raters were not in agreement about which justifications

to mark, even when labeling a pair as relevant (see Figure 5.3).
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As mentioned in the Results section, of the five <fact-check, news article> pairs that at

least 9 people rated as relevant, only an average of 5.2 selected “the article and fact-check are

a good match.’ This indicates that it is not enough to define relevance, but also what

is not relevant. Similarly, 5 workers rated the claim: “a campaign ad attacking Republican

Sen. Jeff Flake falsely says that he hasn’t worked with President Donald Trump to repeal

Obamacare” as relevant, but none selected the justification “the article and fact-check are a

good match.”

This reinforces the Wellesley raters’ intuition about there being a threshold for marking

something as a bad match. This threshold sounds similar to Wang et al.’s [54] comment

about relevant documents not having to be precise matches, but rather aligning in spirit.

Given that at least half of all crowd workers found that each of the claims

was relevant, it makes sense that the model described in [54] classified all of

these documents as relevant, as Google used crowd workers to train its model.

However, recall that Google’s criteria for crowd workers was substantially less stringent than

mine and that they only had three crowd workers assess each < fact-check, news article> pair

requiring no other qualifications. While I do not aim to quantify the impact those choices

had on their results, it is unlikely that Google’s raters were more selective than mine. Thus,

in both cases, it seems that having crowd workers assess relevance was not reflective of how

the larger fact-checking ecosystem considers relevance. If it was, then there would not have

been backlash due to the feature assigning irrelevant fact-checks to news publisher SERPs.

All three of Wellesley raters remarked that they struggled to understand some

of the fact-check articles. They also noted that some of the matched news articles were

difficult to understand, but this is less surprising as problematic information (fake news,

extremely partisan articles, etc.) operate by misrepresenting events and are not held to

the same journalistic standards as reputable sources. But, the fact-check articles should

be elucidating, not confusing. When pressed further on why the articles were confusing,
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raters elaborated that some of the fact-checks were extremely long, included

many details, and required high levels of political knowledge. One rater admitted

that she guessed on two ratings because she did not understand the fact-check. This should

be a concern for fact-checkers as if people are struggling to understand the fact-checks as

written, they are certainly not changing people’s minds. There is other research on whether

fact-checking is corrective (see Chapter 3.2 and 3.3), and this thesis does not aim to make

a conclusion one way or another. Thus, I elected to ensure that the six examples I selected

for the crowd workers to label did not include the articles the Wellesley raters had flagged

as confusing.

5.4 Limitations

There are several limitations of this user-centered approach. One limitation is that I was

only able to collect 59 Reviewed Claims panels. However, it seems likely that there were not

hundreds of these panels as these 59 Reviewed Claims panels were incidentally collected from

a sample of over 8,000 news publisher SERPs. Nevertheless, the data collection of Reviewed

Claims feature was not systematic and likely excluded some news publisher SERPs that

contained a Reviewed Claim component.

Moreover, we are only studying two questions in this chapter: 1) which “claim matches”

are considered relevant by information seekers? and 2) what justifications explain relevance

for information seekers? This means that we are ignoring another question: was the Reviewed

Claims feature useful to information seekers? While this question is interesting, and similar

to research questions I explored in previous work [32], I decided not to explore this in my

thesis as the Reviewed Claims feature no longer exists. While the first two questions may

be applicable to other “claim matching” fact-checking systems, the results about whether

Reviewed Claims was useful would be difficult to separate from the feature itself.
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Another limitation is that only one individual labeled the 118 claims. However, when

compared to the expanded labeling effort which employed three independent, these ratings

were the same as at least two of the three raters in 22 of 30 cases. Ideally, the three

independent raters would have labeled the 118 claims, but time and financial resources were

limiting factors. Therefore, author labeled data should not be considered the primary finding

of this section, but rather a rough estimate of the accuracy of the Reviewed Claims system.

In terms of the expanded labeling effort, all three raters were first-year Wellesley College

students who are members of Professor Eni Mustafaraj’s Cred Lab. This makes it likely

that they had significant exposure to concepts of credibility and trustworthiness before this

experiment as well as similar age and education levels. There was no time limit on their

labeling, while there was a provided time range for the Mechanical Turkers. Additionally,

the Wellesley labelers were provided the actual URLs for the fact-check article and claimant

document, so biases about the sources themselves may have come into play. The labelers also

remarked that two fact-check articles were extremely challenging for them to comprehend,

indicating that their assessments of at least two stories may not be accurate.

The Mechanical Turk study also has several limitations. One is a lack of demographic

diversity of Mechanical Turk workers. Of the 20 workers, 12 were men and 17 were white.

Like many other MTurk studies the mean age skews young and there was a similar bias

towards more educated workers. There is also the issue about whether the crowd workers

had the requisite background knowledge to be able to assess the relevance of the <fact-check,

news article> pairs. I attempt to mitigate the effect of this limitation as Budak et al. [12]

did with the political knowledge test, but knowing recent political history is different than

being able to critically think about the <fact-check, news article> pairs.
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5.5 Summary

As further explored in Chapter 6, information seekers needs were not taken into consid-

eration as the Reviewed Claims feature was removed without meaningful explanation. In

this chapter, I describe and analyze the results of multiple qualitative data labeling efforts.

Overall, the takeaways from this chapter are:

1. There are mixed results on how many of the algorithmically assigned matches are

“relevant matches.” My labels and Wellesley College student raters labels indicate

substantially lower raters of relevance than those of crowd workers.

2. I was unable to identify a clear set of criteria for what makes a match relevant, but

generated several possible candidate criteria.

3. Crowd workers higher threshold for algorithmically assigned fact-check may help ex-

plain why Google’s algorithm was so generous with its classification of relevance (as

the model was trained on crowd worker labels).



Chapter 6

Reviewed Claims: A Sociotechnical

Perspective

In this chapter, the social context of the Reviewed Claims system will be explored in depth

by examining the interactions and sociopolitical position of actors in the Reviewed Claims

ecosystem.

First, there is the platform. Fact-checks can be displayed in a variety of formats on

platforms, and multiple platforms have prominently featured fact-checks in their content.

Google developed an algorithm to match claims with fact-check articles. Fact-checks were

featured not only in the organic search results, but also in a subset of news publishers’ SERPs

in the Reviewed Claims component. The focus of this analysis is Google’s Reviewed Claims

feature.

Second, there are the claimants. Claimants are the entities that either utter claims or

produce online content that is fact-checked. These can be individuals in the public sphere

(usually politicians), news organizations, or online news outlets. For the purposes of the

Reviewed Claims feature, which only was displayed on a subset of news publisher SERPs,

56
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the focus will be on news publishers.

Third are the online information seekers, who can benefit from being shown that a

specific claim is disputed or untrue. The public at large does not know much about fact-

checking or the names of fact-check organizations. Web literacy best practices[15] encourage

people investigating the veracity of claims to start by searching for previously written content

about a claim. Thus, displaying fact-checks as part of a platform’s interface may be an

important way for the public to access additional information about source credibility.

Next are the fact-checking organizations like Snopes, PolitiFact, and The Washington

Post Fact-check. They employ experienced human fact-checkers who select the claims that

they will verify and then generate fact-check articles (sometimes) embedded with ClaimRe-

view markup. These organizations are actively trying to increase the size of their audience,

which is orders of magnitude smaller than that of problematic information. Simultaneously,

these fact-checking organizations must be perceived as politically neutral and impartial to

be able to correct misperceptions.

From these descriptions alone, it becomes clear that these agents have different agendas

and motivations within the fact-checking ecosystem. I follow Marwick’s technique in “Why

do People Share Fake News?” [34] of using multiple methods to understand the sociotechnical

perspective. I 1) conduct a content analysis that used the published writings of the various

actors to explore how these differences played out with the Reviewed Claims feature as well

as 2) supplement the lack of public writings from the information seeker perspective with

those from the qualitative labeling discussed in Chapter 5.
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6.1 Platform

When Google released the Reviewed Claims feature with great fanfare in November 2017, it

never disclosed that it was algorithmically assigning fact-checks. As further explored in the

Chapter 6.3, not even fact-checking organizations seemed aware of the way the Google was

using claim matching to assign fact-checks to news publishers.

Google, the platform, not only designed and released the feature, but also removed it.

After facing pushback to some of the algorithmically assigned fact-checks detailed in the

next section, Google removed a few fact-checks. Facing continued public pressure from

claimants, Google removed the feature in January 2018. No public explanation was provided

to information seekers, only this comment to Poynter and Daily Caller journalists:

“We launched the reviewed claims feature in our Knowledge Panel at the end

of last year as an experiment with the aim of helping people quickly learn more

about news publications...We said previously that we encountered challenges in

our systems that maps fact checks to publishers, and on further examination it’s

clear that we are unable to deliver the quality we’d like for users”1.

Significantly, in this comment, the complaints of the claimants are not mentioned, only

concerns about the quality of the feature for information seekers. From this statement, it

appears that users may have complained about the quality of the feature, not news publishers.

However, there is no indication that this was the case.

I discuss the details of the Reviewed Claims system in Chapters 2.4 and 4. In this

remainder of this section, I will use the framework provided by Selbst et al.in “Fairness and

abstraction in sociotechnical systems” [47] as a way to examine three ways the Reviewed

1https://www.poynter.org/fact-checking/2018/google-suspends-fact-checking-feature-over-quality-
concerns



CHAPTER 6. REVIEWED CLAIMS: A SOCIOTECHNICAL PERSPECTIVE 59

Claims system failed.

The Framing Trap: “Failure to model the entire system over which a social crite-

rion...can be enforced.”

The definition of relevance used by the claim matching algorithm that likely underpins

the Reviewed Claims feature clarifies that relevance “...does not require the literal or precise

claim to appear in the document but rather aims to find ones that seem to align in spirit.

The formal definition Wang et al. provide for a relevant document is “given a fact-checking

article with claim c, a claim-relevant document is a related document that addresses c.”

The inability of information seekers to consistently agree on which claim matches are rel-

evant (described in Chapter 5), exposes that relevance is difficult to model. News publishers’

critiques (discussed further in the next session) of the algorithmically assigned fact-checks on

Reviewed Claims further illustrates that Wang et al.’s definition, on which the whole feature

is built, does not fully model relevance.

The Portability Trap: “Failure to understand how repurposing algorithmic solutions

design for one social context may be misleading, inaccurate or otherwise do harm when

applied to a different context.

While the Reviewed Claims feature was never applied to a context outside fact-checking,

the claim-document discovery process outlined in “Relevant Document Discovery for Fact-

checking Articles” [54] was incorporated into the Reviewed Claims system without resolving

the limitations described in the paper. Having a less than perfect accuracy rate is acceptable

for a conference paper, but those errors become consequential when news publishers become

angry when algorithmically assigning fact-checks. In response to the irrelevant claim matched

fact-checks, publishers alleged that fact-checking organizations and Google are biased against

conservatives. This is especially concerning as public trust in U.S. media institutions and
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fact-checkers is dropping.2 In Marwick’s “Why People Fall for Fake News?” [34] she believes

the Reviewed Claims feature may have caused “even more resentment and anger towards

perceived liberal outlets, contributing to decreased trust.”

The Solutionism Trap: “Failure to recognize the possibility that the best solution to a

problem may not involve technology.”

While I do not think it is fair to criticize Google for attempting to generate a technical

solution, it seems unlikely that modeling relevance can be done without human participation

(beyond labeling training data). Moreover, given the fragile fact-checking ecosystem, it may

be that claim matching systems that rely on opaque machine learning algorithms are destined

for failure in the fact-checking ecosystem.

6.2 Claimants

In the context of Reviewed Claims, the claimants are online news publishers. We can best

understand their conceptions of relevance through their objections to the Reviewed Claims

algorithmically assigned fact-checks.

Of the 59 claimants with Reviewed Claims panels, 12 published an article or post3 about

the Reviewed Claims feature. These news publishers had several objections to the Reviewed

Claims feature.

The Daily Caller article about Reviewed Claims was the first piece of online content

that was critical of the feature.4 The 10 other articles about the Reviewed Claims feature

2https://www.washingtonpost.com/news/fact-checker/wp/2018/06/25/rapidly-expanding-fact-checking-
movement-faces-growing-pains

3The claimants are: Breitbart, Daily Caller, Daily Wire, Gateway Pundit, Federalist, Free Republic,
Freedom Outpost, En Volve, Democratic Underground, Zero Hedge, and Natural News.

4https://dailycaller.com/2018/01/09/googles-new-fact-check-feature-almost-exclusively-targets-
conservative-sites
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reference The Daily Caller’s piece and several excerpt from it. However, Daily Caller’s

criticism of the feature is not limited to the algorithmically assigned fact-checks. The article

instead focuses on three main issues:

1. Four of the fact-checks in the Reviewed Claims panel are not relevant to Daily Caller’s

content.

2. Google is a liberal company and Reviewed Claims reflects their political biases.

3. Comparable left-leaning sites do not have the Reviewed Claims component on their

SERP.5

Exploring Claimant Justifications for Relevance

While only one of the four fact-check articles mentioned in the piece does not name The Daily

Caller in the fact-check (which is how I define algorithmic fact-checks in my analysis), the

critiques of the four fact-checks provide insight into how claimants conceptualize relevance.

The Daily Caller’s critique makes the following points:

1. The fact-check was just reporting the facts, there was no broader claim.

For example, The Daily Caller writes that:

“the third-party ‘fact-checking’ organization says the “claim” in a DC article

that special Counsel Robert Mueller is hiring people that “are all Hillary

Clinton supporters is misleading, if not false. The problem is that TheDC’s

article makes no such claim. Their cited language doesn’t even appear in the

article. Worse yet, there was no language trying to make it seem that the

5While it’s beyond the scope of the sociotechnical analysis of this thesis, see the Appendix for the partisan
leaning of all 59 claimants with Reviewed Claims panels.
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investigation into the Trump administration and Russia is entirely comprised

of Clinton donors. The story simply contained the news: Mueller

hired a Hillary Clinton donor to aid the investigation into President Donald

Trump.”

In a second example, The Daily Caller provides a similar justification:

“The ‘claim’ made, according to Snopes.com and Google, is ‘a transgender

woman raped a young girl in a women’s bathroom because bills were passed’

A quick read of the news piece shows that there was no mention of a bill

or any form of legislation. The story was merely a straightforward

reporting of a disturbing incident originally reported on by a local outlet.”

Google must have found this argument persuasive, as it removed the second example

from The Daily Caller’s Reviewed Claims panel (this was the only algorithmically

assigned fact-check of the four the Daily Caller referenced in its original article).

2. The fact-check article did not evaluate the claim as false. The Daily Caller

took issue with a fact-check that had a rating of “mixture” from Snopes and was still

displayed on the SERP, revealing their assumption that only claims rated false should

appear on Reviewed Claims. Several claims that were not rated as false appeared on

the Reviewed Claims component, as illustrates by Table A.1 in the Appendix.

3. The article was satire, and therefore not deserving of a fact-check: The Daily

Caller claims that one of the assigned fact-checks was “obviously tongue-in-cheek” and

does not warrant a fact-check.

Other claimants offer additional justifications. Breitbart claims that the fact-check was

assessing a different claim than the one in their article.
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“the fact-checker claimed that Breitbart incorrectly reported that an illegal alien

had been charged with starting a California wildfire, when in fact the story

claimed that an illegal alien was arrested on suspicion of arson a completely

different claim.”6

This argument is not unique to this Breitbart piece, note that Daily Caller’s Mueller

quote also said that “the problem is that TheDC’s article makes no such claim.”

The Federalist also offers an example of such a claim.

“Google shows a result from Snopes.com with regard to a Daily Wire story about

Barack Obama praising Jay-Z while remaining publicly silent on the Congres-

sional baseball shooting. Snopes.com suggests that the story was false, because

Obama privately called Sen. Jeff Flake (R-AZ) an exchange reported only by

Flake, not Obama. But the entire premise of the story was that Obama

had remained publicly quiet on the shooting.”7

Whether these two examples actually illustrate <fact-check, news article> pairs that

verify completely different claims, it is a common claimant justification for a fact-check not

applying to their content.

Another justification that appears in The Federalist is that the fact-check concerns a

minor detail in the article.

“Consider the case of a woman named Eileen Wellstone. Out of many thou-

sands of pieces published by The Federalist over the past four years, a single one

mentions the name Eileen Wellstone. That article, detailing the sordid history

6https://www.breitbart.com/tech/2018/01/22/google-cancels-fact-check-program-fact-checked
7https://thefederalist.com/2018/01/10/googles-new-factchecker-is-partisan-garbage



CHAPTER 6. REVIEWED CLAIMS: A SOCIOTECHNICAL PERSPECTIVE 64

of Bill Clinton, mentions her name exactly once: ‘Another woman, Eileen

Wellstone, claimed Clinton raped her while he was at Oxford University in the

late 1960s.”’

Together, the 12 claimant articles produce the following justifications for when a fact-

check may not be relevant to a piece of content:

1. The claimant document was simply reporting the facts, not making a broader political

claim.

2. The fact-check did not evaluate the claim to be false.

3. The claimant article is satire.

4. The fact-check was assessing a different claim than the one in their article.

5. The fact-check concerns a minor detail in the article.

Claims Of Partisan Bias

The primary focus of claimant’s reporting of the Reviewed Claims feature, was not the

justifications of their content outlined above, but rather an attack on the partisan ship of

Google fact-checks.

Of the twelve claimant articles about the Reviewed Claims feature, nine were articles

and three (Above Top Secret, Democratic Underground, and Free Republic are forum posts).

Of the nine articles, eight mentioned that Google was either biased towards liberals or anti-

conservative. six claimants criticized fact-checking organizations for being partisan. All nine

articles are from claimants that are conservative or conspiracy/pseudoscience sites.
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As discussed in Chapter 3.3, fact-checking is only useful if the fact-checks are trusted. If

the platform surfacing the fact-checks or the fact-checkers themselves are not trusted, then

fact-checks will not be persuasive. Perhaps the distrust of fact-checks and Google make it

impossible for Google to introduce successful fact-checking features.

In response to Poynter’s article exploring the bugs in the Reviewed Claims algorithm,

The Daily Caller publishes a follow-up article.8

“Google’s fact-checking program is a terrible idea,” Peter Flaherty, president of

the right-leaning nonprofit The National Legal and Policy Center...“It cannot be

fixed. The problem is with the culture. Google has to fix the culture by hiring a

greater diversity of people, especially conservatives and libertarians.”

With this understanding, it is likely that no automated fact-checking feature could have

been viewed positively by the entire fact-checking ecosystem, especially by conservative

claimants.

The subsection will examine the influence of claimants and news publishers in the removal

of the Reviewed Claims feature.

Claimants Role in the Reviewed Claims Ecosystem

News publishers cannot control the results displayed to users on Google search pages, in-

cluding the Reviewed Claims panel. In the FAQ about the Reviewed Claims, publishers who

disagree with a fact-check on the feature are instructed:

“Reviewed Claims are made by publishers that fact check other publishers using

the Fact Check markup and have been algorithmically determined to be author-

8https://dailycaller.com/2018/01/24/faulty-algorithms-liberal-bias-googles-fact-checking
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itative. If a publisher believes a reviewed claim is incorrect, Google recommends

they contact the fact-checker that wrote the review. Publishers can also use the

feedback link in the Knowledge Panel to report claims they believe are inaccu-

rate.”9

So, there is some evidence that news publishers, while not designing the feature or having

any control over whether the feature appeared on SERPs about them, were an important

part in having the feature removed.

6.3 Online Information Seekers

The Reviewed Claims feature was designed for online information seekers to help information

seekers determine the credibility of a news source. The public at large does not know much

about fact-checking, or the names of fact-check organizations, so displaying fact-checks as

part of a Google’s interface may be a useful public service that aligns with current web

literacy approaches.

Online Information Seeker Justifications

As described in Chapter 5, I coded three undergraduate students’ justifications for why thirty

documents were or were not relevant to their algorithmically assigned fact-check articles. The

articles selected include a subset of the articles from The Daily Caller and The Federalist

that are mentioned above but include articles from other sources. From these responses, five

justifications emerged that explain why a fact-check may not be relevant. Rater responses

often included multiple justifications. Discussions with the raters confirmed that not all of

9https://support.google.com/websearch/answer/7568277?p=newspublisherskp
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the justifications on their own warranted a fact-check to be relevant or not relevant, but

rather affected their confidence scores.

Below are the five justifications generated to describe when a claim match is not relevant:

1. The fact-check concerns a minor detail in the article. This justification appears

in the claimant’s justifications.

2. The fact-check is verifying a different claim than what was in the article.

This justification appears in the news publishers’ justifications.

3. The fact-check and article covered the same general topic but differed on

details. This justification is used to describe when two a <fact-check, news article>

are not a precise match. Raters often cited this justification in conjunction with another

when labeling a claim match as not relevant.

4. The fact-check and article are framed differently. Fact-checks can be framed

differently than the original topic by having different contextual details, by reporting on

reporting of fact-checked events, or by using the fact-checked claim as the background

for a new claim. Oftentimes, this justification was used to explain the raters’ low

confidence in their relevance assessment.

5. The fact-check is more general than the article. From discussions with the raters

and their written justifications, one of the most difficult matches to evaluate was The

Gateway Pundit’s article about whether the DOJ leaked the name of an FBI informant,

lobbyist William D. Campbell, who bribed the Clintons to give Russia Uranium. This

multi-agent convoluted claim was difficult for raters to verify in the almost 2,000 word

fact-check “What you need to know about Hillary Clinton, Russia, and uranium”10.

The fact-check encompassed much more the specific claim about William Campbell,

10https://www.politifact.com/truth-o-meter/article/2017/oct/24/what-you-need-know-about-hillary-
clinton-and-urani
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who is not named in the fact-check. However, the idea that Secretary of State Hillary

Clinton interfered in the process of Russia obtaining Uranium is disproven.

Online Information Seekers Reaction to Reviewed Claims

While Google may have conducted user studies to test the utility of the Reviewed Claims fea-

ture, there have been no peer-reviewed research or press releases detailing users’ interaction

with the feature. Thus, I cannot assess the usefulness of the feature. However, a previous

study I conducted found that information seekers find the expanded news publisher Knowl-

edge Panel beneficial to evaluate the credibility of news sources [32]. However, a Gizmodo

article about the Reviewed Claims controversy is doubtful about the feature’s utility:

“...this fact-checking module isn’t really all that useful—finding it requires click-

ing through to a submenu in a sidebar, and once the user’s there the module’s

crowded with cut-off sentences and poorly contextualized information...It’s not

even clear having a fact-checking module appear alongside searches for a publi-

cation’s name could noticeably impact the regular SEO referrals they’re getting

traffic from, which is what generates views.”11

Again, no empirical research is publicly available that evaluates the ways information

seekers use the feature.

While both the claimants and the platform played an important role in the removal of the

Reviewed Claims feature, users, the intended audience of the feature, had no recourse to keep

the feature or replacement mechanism for the feature. There is a small “Feedback” button

that appears at the bottom of all Knowledge Panels, but users knowledge of its presence and

the responsiveness of Google to that user feedback are both doubtful. Thus, I assess that

11https://gizmodo.com/conservatives-are-now-getting-angry-about-googles-fact-1821934885
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users held limited ability to influence or even keep the Reviewed Claims feature and observe

that the justification for a relevant fact-check have some, but not complete overlap with that

of news publishers.

6.4 Fact-checking Organizations

There is more to learn about fact-checking organizations reactions to algorithmic fact-

checking. The highly specific nature of some fact-checks reaffirm that many fact-checks

are often written with a particular claimant and claim in mind, the reusability of fact-check

articles may not be on the radar of many fact-checkers. However, some fact-checkers are more

“algorithmically savvy” than others. For example, the British fact-checking organization Full

Fact, is one of the leaders in developing automated fact-checking solutions.

In terms of the Reviewed Claims feature, the Washington Post’s response to The Daily

Caller’s complaints about an algorithmically assigned Washington Post fact-check provides

a preliminary indication of fact-checking organizations relationship to the feature.

When asked about the algorithmically assigned fact-check, The Washington Post re-

sponded with the following statement to The Daily Caller:

“We went back and double-checked the story and the information submitted to

Google, and The Daily Caller was not mentioned at all, even in links... We clearly

labeled the source, so I cannot speak to how The Daily Caller ended up being

erroneously listed as the source of the fact-checked quote in this case.12

The fact that The Washington Post believed that The Daily Caller was erroneously listed

as the source, rather than understanding that their fact-check was algorithmically assigned

12http://archive.fo/vGAMx
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by Google, illustrates the lack of transparency between platforms and fact-checking organi-

zations. This is not a problem limited to Reviewed Claims, as fact-checking organizations

have also been critical of Facebook’s fact-checking efforts in terms of open data sharing13.

While fact-checking organizations may not have been notified of the automated nature

of the Reviewed Claims feature, they are certainly aware of the ClaimReview that they

are adding to their articles. Adding ClaimReview clearly benefits Google, but recently

fact-checking organizations have questioned if their efforts are beneficial to any stakeholder

besides Google. In April 2019, The Vice President of Operations at Snopes, tweeted:

“Last week we removed the ClaimReview markup that powers the fact check

rich snippets in @Google from @snopes. The rest of the community should

do the same and @Google should license the content or prove its [sic] actually

effective.”14

As of writing, Google has not public responded, nor has any other fact-checking organization

publicly announced removing ClaimReview from their sites. However, this again shows the

complex sociotechnical ecosystem of these actors.

Fact-checking organizations seemed unaware of the algorithmic assignments of their fact-

checks on Reviewed Claims. Despite their lack of ability to contest Google’s fact-check

matching, fact-checking organizations still hold power within the fact-checking ecosystem as

they 1) select claims to fact-check and 2) populate the structured data.

13https://techcrunch.com/2019/02/01/snopes-and-ap-leave-facebook-fact-checking-partnership
14https://twitter.com/vinnysgreen/status/1114188133099171841
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6.5 Summary

Google’s Reviewed Claims feature created a complex sociotechnical system built on the

already fraught fact-checking ecosystem.

Google created the Reviewed Claims feature to address concerns that they were not

actively tackling online misinformation on Google Search. Reviewed Claims was designed

to provide contextual information about news publishers to assist information seekers to

assess the credibility of online information and was released with much fanfare. However,

Google failed to disclose a key piece of context: the feature was not simply relying on

ClaimReview data supplied by third-party fact-checkers to identify relevant fact-checks, but

frequently relied their own algorithm to assign fact-checks to news publisher content. Thus,

this chapter focuses on how the various actors define relevance, as this definition is key to

understanding the operation of Google’s algorithm. I find that the definition in the technical

description of a relevant document explored in Chapter 4, fails to account for the social

differences and incentives when defining relevance (“the framing trap”).

I identified 59 claimants (news publishers) who had Reviewed Claims panels. 12 of these

claimants complained online and on TV about the feature. Several of these sources alleged

that Google’s anti-conservative bias was the reason Reviewed Claims was appearing on their

SERP. They pointed out several instances that they felt that a fact-check did not belong

in the Reviewed Claims. Some of the fact-checks were quickly removed by Google. While

some of the claimant’s concerns centered around issues of relevance, others emphasized that

fact-checking and fact-checking organizations were not trustworthy or unbiased. I categorize

and delineate the concerns raised by claimants to later compare with other actors definition

of relevance.

As discussed in Chapter 5, the information seekers who labeled the relevancy of fact-

checks had varying levels of agreement in defining and explaining what a relevant fact-check.
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Nevertheless, I compared the justifications online information seekers provide to those of the

claimants and found substantial overlap as well as discrepancies between the justifications of

information seekers and claimants. There is no publicly available data that users complained

about the feature. There is also no empirical data that they found the Reviewed Claims

useful. Nevertheless, the feature was removed from the SERP two months after it was

released.

Since 2015, a growing number of fact-checking organizations have added ClaimReview

to their fact-checks. This allows Google to easily identify fact-checks and feature them in

various ways on SERP. Fact-checking organizations have traditionally been supportive of such

measures as they are always aiming for more information seekers to have more exposure to

their fact-checks; however, recent frustrations with lack of licensure and transparency from

platforms has led to increasing tensions and some fact-checking organizations to remove

ClaimReview from their articles. With specific regard to the Reviewed Claims system, The

Washington Post seemed unaware that their fact-checks were being algorithmically assigned

to news articles not explicitly referenced in the text or ClaimReview of the fact-checks. It is

unclear if other fact-checking organizations were aware of the Reviewed Claims feature.

The Reviewed Claims system designers failed to create an easily interpretable definition

of relevance that could be applied and explained in the complex fact-checking ecosystem.

Moreover, it seems that despite information seekers being the intended beneficiary of Re-

viewed Claims, there was little attention placed to how the feature affected their search

experience or ability to evaluate online information.
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Conclusion

There is a large push to leverage machine learning to spread fact-checks further. This was

the motivation of Wang et al.’s paper that I believe underpins the Reviewed Claims technical

system. However, Wang et al.’s definition of relevance does not recognize that relevance is

a complex human value. The algorithm described in Wang et al. fails to model (or even

mention) how the sociotechnical system that is the fact-checking ecosystem affects their clas-

sifications. This limitation of their work is one common in machine learning, so common

that Selbst et al. dubbed it “the framing trap” [47]. My detailed exploration of how different

actors in the fact-checking ecosystem interacted with Reviewed Claims as well as their con-

ceptions of relevance in “claim matching” attempts to qualitatively model relevance in the

Reviewed Claims system. As Introna and Nissenbaum wrote in 1998, “determining relevancy

is an extraordinarily difficult task...Besides the engineering challenges, experts must struggle

with the challenging of approximating a complex human value” [26]. In Chapter 6, I illus-

trate that the Reviewed Claims feature was unable to successfully model the multi-faceted,

multi-actor definitions of relevance.

I devote Chapter 5 to examining how users assess whether a claim match is irrelevant.
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I label the 118 algorithmically assigned claim matches and find 25 matches (21%) to be

“not relevant.” Three raters independently label 30 <fact-check, news article> pairs that

I struggled to label. I discover that raters had a fairly difficult time coming to the same

relevance assessment. After a reconciliation process, the agreement rate between raters

improved substantially, providing an indication that information seekers may be able to come

to a common definition of relevance. Then I attempted to assess whether the justifications

the raters used to explain whether a claim was relevant to a document were consistent among

a larger population. In the process of running this experiment, I discovered that the crowd

workers were far more generous in labeling claim matches as relevant than the independent

raters or myself. As Wang et al. utilized crowd worker responses to train their data this is

perhaps another reason that Wang et al.’s claim-document discovery process created a far

from perfect implementation of relevance in the Reviewed Claims component.

This thesis is not arguing that humans should be excluded from automated fact-checking

systems, instead, this thesis provides a compelling case study for why modeling complex

social criterion like relevancy requires human input and discussion. Envisioning what such

systems and discussion look like warrants further research, but it is concerning that Google,

despite outlining the limitations of their “claim-document discovery approach” (summarized

in Chapter 4.4), did not employ any human moderators to examine the outputs of their

model. Of the over 8,000 SERPs collected, only 59 had Reviewed Claim panels. Even if 500

news publishers had the Reviewed Claims feature on their SERP, Google could have employed

people to perform a final round check to ensure users found all algorithmically assigned fact-

checks pertinent to the news publishers’ content. Granted, I cannot conclusively say they did

not employ human “moderators,” but it seems unlikely given media reports of the feature.

Additionally, platforms like Google often argue that they are a neutral arbiter of informa-

tion. Platforms make many meaningful judgments that illustrate they are in fact important

gatekeepers of our information [19]. The Reviewed Claims feature is a perfect example of
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this. The Reviewed Claims feature only appeared on a very small subset of news publisher

SERPs. How were the news publishers selected? This is certainly an editorial judgment,

even if is done with an algorithm.

The lack of transparency in the Google Reviewed Claims feature is especially problematic.

Despite the detailed public announcement of the Reviewed Claims feature1, nowhere is it

disclosed that Google will be algorithmically assigning fact-checks. As discussed in Chapter

6.2, in the FAQ about Reviewed Claims, publishers who disagree with a fact-check are

told that “...if a publisher believes a reviewed claim is incorrect, Google recommends they

contact the fact-checker that wrote the review”2. This is misleading considering that 57%

of fact-checks in the sample of 221 claims were algorithmically assigned (see Chapter 5), so

Google, not the fact-checking organizations, were responsible for the majority of fact-checks

appearing in Reviewed Claims. Google’s lack of transparency is a concern of fact-checkers.

As explored in Chapter 6.4, Snopes, the largest fact-checking organization, removed all of

the ClaimReview markup (the structured data that underpins the Reviewed Claims system)

until Google 1) licenses the content created by fact-checking organizations and 2) provides

evidence that their approach of incorporating fact-checks into the SERP are effective. As

of writing, Google has not provided that data to Snopes and the ClaimReview data is no

longer present on Snopes fact-checks.

This thesis finds that if platforms want to build automated tools that model a complex

social value like relevance, they need to understand how all actors in the sociotechnical system

define that value. Additionally, successful systems will provide meaningful and transparent

explanations about their algorithms and data.

There are several promising avenues for future work, especially in regard to strengthening

the findings related to RQ2 and RQ3.

1https://www.blog.google/products/search/learn-more-about-publishers-google
2https://support.google.com/websearch/answer/7568277?p=newspublisherskp
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• Additional relevance assessment tasks for crowd workers that require the review of

additional claims. This work should 1) recruit a more representative sample and 2)

require workers to rate more than six claims.

• A more nuanced exploration of fact-checkers perceptions of how automated fact-checking

affects their work. It seems that a follow-up ethnography to Graves’ study [21] could

be particularly valuable.

• Further examination of the reasons why crowd workers were less selective in their

relevance assessments. Their broad interpretation of relevance does not model that

of claimants (discussed in Chapter 6.2). This preliminary finding is worthy of future

exploration as crowd workers are seen as a fix-all to the limitations of AI systems.

Despite technology platforms touting AI as the solution to all problems, human labor

is required (and often exploited [27]) to provide everything from platform content

moderation to training data for supervised learning models (as in Wang et al. [54]).

• A broader analysis of fact-checking organizations. In this thesis, I have chosen to

focus on examining fact-checking organizations that are not affiliated with a news

organization, unlike The Washington Post Fact-checker, AP Fact-check, and several

others. While Snopes and PolitiFact are frequently accused of liberal bias, charges of

partisan seem to be especially fervent when it comes to mainstream news organizations.

Looking at the differences in fact-checking process and perceptions of fact-checking

organizations by institutional affiliation is another interesting area of study.

• An exploration of the differences between determining relevance and determining irrel-

evance. This thesis has primarily defined relevance by defining what is not irrelevant.

There are possible implications to this approach that deserve further discussion and

thought.

Without fact-checking, false claims stand with no direct confrontation. Fact-checks have
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the potential to take falsehoods head-on and correct people’s misperceptions. Fact-check

articles serve as a flag to online platforms that a claim being promoted by users or their

algorithms may be problematic. Of course, there are complex questions surrounding fact-

checking including: What content warrants a fact-check? How should fact-check articles be

constructed? Currently, the question engrossing the fact-checking community on the front

lines fighting fake news is: how can the reach of fact-checks be spread farther?



Chapter 8

Glossary

Algorithmically assigned fact-check: A fact-check article that has been matched to a
claimant document through some technical system (e.g. the system described in Chapter 4).

Automated fact-checking: Fact-checking that relies on some kind of computational ap-
proach to identify, match, check, or publish fact-checks.

Candidate document: An article that bears some similarity to a fact-checked document.

Claim: A statement addressed in a fact-check article.

Claimant: the source of a claim that has been fact-checked.

Claim matching: The process by which fact-checks are algorithmically assigned to relevant
documents.

Claim-document discovery process: Described in detail in Chapter 4, the claim-document
discovery process describes the approach in [54].

Fact-check article: A fact-check never produces new information, but rather selects a
claim and uses existing reporting and research to assess the validity of that claim.

Information Seeker: An individual using the web.

Knowledge Panel: A component on the Google search engine result page that provides
contextual information about an entity, see Figure 1.2 for an example.

Machine Learning: a technical approach that leverages algorithms and statistical models
to perform a specific task by relying on patterns.

Platform: An intermediary to the exchange of content (e.g. Google). See [19] for more.

Reviewed Claims: A component of the Knowledge Panel from November 2017 - January

78
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2018 that surfaced fact-checks, some of which were algorithmically assigned.

Sociotechnical Perspective: a view of technical systems that incorporates social context,
values, and actors.
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Appendix A

A.1 The Data Collection Process

As part of our long-term research on web literacy and credibility of online sources, the Cred
Lab monitors the evolution of SERPs over time. That is, for various query phrases, we
automatically collect the Google’s search result pages and analyze changes in them. In early
January 2018, as part of a large data gathering about media organizations in the United
States [32], we collected data associated with two lists of online publishers that were made
public by third-party journalists and researchers.

A.1.1 United States Newspaper List

We used the USNPL (United States Newspaper List) 1, which is a database of US-based
local newspapers, TV, and radio stations broken down by state (n = 7269). It aggregates the
newspaper and TV station lists from each state, which were scraped with express permission
from the maintainers of the list. We chose to use this list instead of each state’s Wikipedia list
of newspapers, because we found the USNPL list to be more evenly distributed state-to-state
and equally, if not more, complete.

A.1.2 List of Unreliable Websites

We aggregated several well-known lists of unreliable sources to create as comprehensive a
list as possible (n = 585). Our list is comprised of the following sources:

• Politifact’s Fake News Alamanac (n = 330) Last updated in November 2017, the
Politifact Almanac lists sources that intentionally publish disinformation2.

1http://www.usnpl.com
2https://www.politifact.com/punditfact/article/2017/apr/20/politifacts-guide-fake-news-websites-and-

what-they/
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• 2016 and 2017 Buzzfeed List of Top Fake News Sites (n = 96, 167) Buzzfeed
used BuzzSumo to determine the most popular fake sites on Facebook in 2016 and
20173.

• Zimdar’s “False, Misleading, Clickbait-y, and Satirical ‘News’ Sources”4( n
= 121) In November 2016, Melissa Zimdar collected and categorized unreliable sources.
Not all sources on this list are fake, for example, some are satirical.

• “Alternative Narrative”-affirming Sources [49] explores the media ecosystem on
Twitter after mass-shooting events. We selected the subset (n = 69) of that dataset that
“affirmed” alternative narratives (e.g. rumors and conspiracies) after mass shootings.

The combined list of websites from the partisan dataset and the aggregated unreliable
dataset amounts to 1150 website domain names (after removing duplicates).

A.2 The Composition of the 59 Reviewed Claims Pan-

els

In Table A.1, we have aggregated the information for 15 out of 59 sites with a RC tab. This
is due to space reasons, we cannot list all 59 sites in the table. However, we provide the
names of the websites with the number of fact-checks assigned to them in Table A.2. Here
is some information about these tables:

• The order of the websites (in both tables) is based on their global Alexa Rank5 as of
September 2018, with most popular websites shown first.

• The 2nd column, the bias value, is assigned based on the value present in the Buzzfeed
dataset or by consulting the bias assigned by Media Bias/Fact Check (marked with
a star). In total, we found 31 right-leaning websites, 14 left-leaning websites, and 14
conspiracy/pseudo-science/fake-news websites.

• The values for the column “Factual Accuracy” are also pulled from Media Bias/Fact
Check (MBFC). The label “Questionable’ according to MBFC indicates that a website
“may be very untrustworthy and should be fact checked on a per article basis”.

• The number of claims per website varies from 1 to 10. 22 websites have only one claim,
and 11 websites have 10 claims. In average a tab had 3.7 claims (median was 2).

3https://github.com/BuzzFeedNews/2017-12-fake-news-top-50/tree/master/data
4http://d279m997dpfwgl.cloudfront.net/wp/2016/11/Resource-False-Misleading-Clickbait-y-and-

Satirical-%E2%80%9CNews%E2%80%9D-Sources-1.pdf
5https://www.alexa.com/siteinfo
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Website
Bias
(by BF)

Factual
Accuracy
(MBFC)

Snopes Factcheck Politifact WaPo
Climate
Feedback

Others Total

Breitbart right Questionable
False (2)
Mixture (1)

False (2)
Unsupported(1)

False (1)
Mostly False (1)
CR Unclear (1)

Inaccurate (1) 10

The Daily Caller right Mixed
False (2)
Mixture (2)

Misleading (1) 3 Pinocchios (1) Inaccurate (3) 10

Zero Hedge
Conspiracy/
Pseudoscience

False (3)
Mixture (1)
Unproven (1)

False (1)
Clintons role
unclear (1)

Lacks
Content (1)

CBS: False (1)
Polygraph: False (1)

10

Daily Wire right Mixed

False (4)
Mostly False (1)
Mixture (1)
Outdated (1)

No, he did not (1) Mostly True (1) Incorrect (1) 10

WND (Word
Net Daily)

right Mixed

False (3)
Unproven (1)
Mostly false (1)
Mostly true (1)

False (1)
Misleading (1)

False (1) Incorrect (1) 10

Gateway Pundit right Questionable
False (2)
Mixture (2)

False (2)
Pants on fire (1)
False (1)
CR Unclear (1)

Teyit.org: False (1) 10

The Federalist right High Unproven (2) Incorrect (1) 3
Upworthy left High False (1) 1

Before It’s News
Questionable/
Fake News

False (5)
Misattributed (1)

False (2) Pants on fire (2) 10

Palmer Report left Mixed
False (2)
Unproven (4)

6

Natural News Pseudoscience
False (3)
True (1)

Probably at
high doses (1)

Pants on fire (1) 5

Democratic
Underground

left Mixed False (2) Mostly false (1) Fact/Myth: Fact (1) 4

Free Republic right* Mixed
False (2)
Misattributed (1)

False (1)
No, he did not (1)

Pants on fire (2)
Half True (1)

4 Pinocchios (1) Teyit.org: False (1) 10

The Conservative
Tree House

right Mixed False (1) False (1) 2

Above Top
Secret

Conspiracy
False (3)
Mixture (1)
Unproven (1)

4 Pinocchios (1) 6

Table A.1: The top 15 (Alexa Rank) websites in our dataset that were assigned a Reviewed
Claims (RC) tab by Google.

Bias or Accuracy
List of websites to which Google assigned a Reviewed Claims tab
(ordered by Alexa Rank)

Right

Breitbart (10), The Daily Caller (10), The Daily Wire (10), WND [Word Net Daily] (10),
The Gateway Pundit (10), The Federalist (3), Free Republic (10), The Conservative Tree
House (2), OAN Network (2), Big League Politics (4), The Political Insider (2), Frontpage
Magazine (2), American Greatness (2), American Renaissance (1), Bearing Arms (1),
Red State Watcher (1), Truthfeed (6), 100 Percent Fed Up (2), Freedom Outpost (1),
Commentary Magazine (1), The Millennium Report (1), VDARE (2), Sparta Report (1),
En Volve (3), Conservative Fighters (4), Silence is Consent (2), America’s Freedom
Fighters (5), Freedom Daily (10), American News (1), American Conservative
Herald (1), The New York Evening (1).

Left

Upworthy (1), Palmer Report (6), Democratic Underground (4), Counterpunch (3),
Rightwingwatch (1), Bipartisan Report (3), True Activist (1), OpEd News (1),
American Herald Tribune (1), Occupy Democrats (10), Egberto Willies (1),
If You Only News (1), American News X (2), Resistance Report (1)

Conspiracy /
Pseudoscience /
Fake news

Zero Hedge (10), Before It’s News (10), Natural News (6), Above Top Secret (6),
Collective Evolution (3), Your News Wire (10), Investment Watch Blog (7),
Awareness Act (1), Activist Post (2), Renegade Tribune (1), The Common
Sense Show (1), Fellowship of the minds (4), Intellihub (2), 21st Century Wire (1)

Table A.2: The list of all 59 websites with a Reviewed Claims tab in our January 2018
dataset, grouped by political bias or factual accuracy. The labels come from BuzzFeed and
Media Bias/Fact Check. The numbers in parentheses indicate the number of fact-checks
that the RC tab contained.
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• There are 10 different fact-check providers, Snopes, Factcheck.org, Politifact, Wash-
ington Post (WaPo), Climate Feedback (each of them as a column), and five others
that we have put together in the before-last column: CBS News (1), Fact/Myth (1),
Gossip Cop (3), Polygraph.info (2), and Teyit.org (2).

While the ratio 31 right-leaning vs. 14 left-leaning might be viewed as skewed, we have
to consider that the partisan websites dataset composition is 490 (right) vs 177 (left). Thus,
the findings are proportional to the size of the dataset.
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